
© ISO/IEC 2017 – All rights reserved

Document type: International Standard
Document subtype:
Document stage: (50) Approval
Document language: E

STD Version 2.1c2

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11/N16677
Geneva, CH, January 2017

Title: Text of ISO/IEC FDIS 14496-31 Video Coding for Browsers
Source: Video subgroup

ISO/IEC JTC1/SC 29
Date: 2017-01-20

ISO/IEC FDIS 14496-31:2017(E)

ISO/IEC JTC1/SC 29/WG 11

Secretariat: ANSI

Information technology — Coding of audio visual objects — Part 31:
Video coding for browsers

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved iii

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as
permitted under the applicable laws of the user's country, neither this ISO draft nor any extract from it
may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including
photocopying, or posting on the internet or an intranet, without prior written permission. Permission can
be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office
Ch. de Blandonnet 8  CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC FDIS 14496-31:2017(E)

iv © ISO/IEC 2017 – All rights reserved

Contents Page

1 Scope ..1

2 Normative references ..1

3 Terms and definitions ...1

4 Symbols (and abbreviated terms) ..5

5 Conventions ...5
5.1 General ..5
5.2 Arithmetic operators ...5
5.3 Logical operators ...6
5.4 Relational operators ..6
5.5 Bitwise operators ...6
5.6 Assignment operators ...6
5.7 Range notation ...7
5.8 Mathematical functions ...7
5.9 Order of operation precedence ..7
5.10 Method of describing bitstream syntax ...8
5.11 Functions ... 10
5.12 Descriptors .. 10
5.12.1 General ... 10
5.12.2 f(n) .. 10
5.12.3 B(p) ... 10
5.12.4 u(n) ... 10
5.12.5 F .. 10
5.12.6 P(7) ... 10
5.12.7 P(8) ... 10
5.12.8 T .. 11

6 Bitstream syntax ... 11
6.1 General ... 11
6.2 Frame syntax ... 11
6.3 Uncompressed header syntax ... 12
6.4 Compressed header syntax ... 12
6.4.1 General ... 12
6.4.2 Segment based adjustments syntax... 14
6.4.3 Loop filter adjustments syntax .. 14
6.4.4 Quantizer indices syntax ... 15
6.4.5 Token probability update syntax ... 16
6.4.6 MV probability update syntax .. 16
6.5 Macroblock data syntax ... 16
6.5.1 Macroblock header syntax ... 16
6.5.2 General ... 16
6.5.3 Prediction residual data syntax ... 18
6.5.4 Prediction residual block syntax ... 18

7 Bitstream semantics ... 20
7.1 General ... 20
7.2 Frame semantics... 20
7.3 Uncompressed header semantics .. 20
7.4 Compressed header semantics ... 22
7.4.1 General ... 22
7.4.2 Segment based adjustments semantics .. 23
7.4.3 Loop filter adjustments semantics ... 24
7.4.4 Quantizer indices semantics ... 25
7.4.5 Token probability update semantics .. 26
7.4.6 MV probability update semantics .. 26
7.5 Macroblock data semantics ... 27
7.5.1 Macroblock header semantics .. 27

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved v

7.5.2 Prediction residual block semantics ... 29

8 Decoding process ... 30
8.1 General ... 30
8.2 Header update process ... 30
8.3 Coding context update process ... 31
8.4 Macroblock decoding process ... 32
8.4.1 General ... 32
8.4.2 Intra prediction process .. 32
8.4.3 Inter prediction process .. 38
8.4.4 Prediction residual decoding process .. 41
8.4.5 Motion vector prediction process .. 46
8.4.6 Motion vector reconstruction process .. 49
8.5 Loop filter process .. 50
8.5.1 General ... 50
8.5.2 Normal macroblock deblocking process .. 51
8.5.3 Filter level process .. 52
8.5.4 Simple macroblock deblocking process ... 53
8.5.5 Macroblock edge deblocking process .. 53
8.5.6 Sub-block edge deblocking process ... 54
8.5.7 Simple edge deblocking process .. 54
8.5.8 Threshold process .. 54
8.5.9 Common filtering process .. 55
8.5.10 Macroblock edge filtering process .. 56
8.5.11 Loop filter threshold process ... 57
8.6 Output process .. 57
8.7 Reference frame update process ... 58
8.7.1 General ... 58
8.7.2 Copy frame process .. 58

9 Parsing process ... 59
9.1 Parsing process for f(n) .. 59
9.2 Parsing process for Boolean decoder .. 59
9.2.1 General ... 59
9.2.2 Initialization process for Boolean decoder ... 59
9.2.3 Boolean decoder selection process .. 60
9.2.4 Boolean decoding process... 60
9.2.5 Parsing process for read_literal .. 61
9.3 Parsing process for tree encoded syntax elements .. 61
9.3.1 General ... 61
9.3.2 Tree selection process .. 61
9.3.3 Probability selection process .. 64
9.3.4 Tree decoding process ... 71

10 Additional probability tables .. 71
10.1 Probability update tables .. 71
10.2 Default probability tables.. 75

 (Normative) Profiles and levels ... 80
A.1 Main profile .. 80

 (Informative) Reference encoder description ... 81
B.1 Summary .. 81
B.2 Prediction ... 82
B.2.1 Intra prediction .. 82
B.2.2 Inter prediction .. 83
B.3 Transforms ... 85
B.3.1 General ... 85
B.3.2 The discrete cosine transform ... 85
B.3.3 The Walsh Hadamard transform .. 86
B.4 Quantization ... 86
B.4.1 General ... 86

ISO/IEC FDIS 14496-31:2017(E)

vi © ISO/IEC 2017 – All rights reserved

B.4.2 Coding the transformed coefficients .. 86
B.5 Loop filter .. 87
B.5.1 General ... 87
B.5.2 Simple filter ... 88
B.5.3 Normal filter ... 88
B.6 Entropy coder .. 88

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved vii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO
and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in
the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of
document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on the ISO list
of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute
an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as
well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical
Barriers to Trade (TBT) see the following URL www.iso.org/iso/foreword.html.

The committee responsible for this document is ISO/IEC JTC 1, Information technology, SC 29, Coding of Audio,
Picture, Multimedia and Hypermedia Information.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of audio
visual objects:

 Part 1: Systems

 Part 2: Visual

 Part 3: Audio

 Part 4: Conformance testing

 Part 5: Reference software

 Part 6: Delivery Multimedia Integration Framework (DMIF)

 Part 7: Optimized reference software for coding of audio-visual objects

 Part 8: Carriage of ISO/IEC 14496 contents over IP networks

 Part 9: Reference hardware description

 Part 10: Advanced Video Coding

 Part 11: Scene description and application engine

 Part 12: ISO base media file format

 Part 13: Intellectual Property Management and Protection (IPMP) extensions

ISO/IEC FDIS 14496-31:2017(E)

viii © ISO/IEC 2017 – All rights reserved

 Part 14: MP4 file format

 Part 15: Advanced Video Coding (AVC) file format

 Part 16: Animation Framework eXtension (AFX)

 Part 17: Streaming text format

 Part 18: Font compression and streaming

 Part 19: Synthesized texture stream

 Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)

 Part 21: MPEG-J Graphics Framework eXtensions (GFX)

 Part 22: Open Font Format

 Part 23: Symbolic Music Representation

 Part 24: Audio and systems interaction

 Part 25: 3D Graphics Compression Model

 Part 26: Audio conformance

 Part 27: 3D Graphics conformance

 Part 28: Composite font representation

 Part 29: Web video coding

 Part 30: Timed text and other visual overlays in ISO base media file format

 Part 31: Video Coding for Browsers

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved ix

Introduction

This International Standard specifies Video Coding for Browsers (VCB), a video compression technology that
is intended for use within World Wide Web browsers.

FINAL DRAFT INTERNATIONAL STANDARD ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 1

Information technology — Coding of audio visual objects —
Part 31: Video coding for browsers

1 Scope

This document specifies the Video Coding for Browsers (VCB) syntax format and decoding process.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable
for its application. For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

None.

3 Terms and definitions

3.1
4:2:0 colour format
colour format with two chroma arrays that each have half the height and half the width of the luma array

3.2
AC transform coefficient
transform coefficient for which the frequency index in at least one of the two dimensions is non-zero

3.3
bitstream
sequence of bits that forms the representation of coded frames

3.4
bit string
brdered string with a limited number of bits, in which the left-most bit is the most significant bit (MSB) and the
right-most bit is the least significant bit (LSB)

3.5
block
MxN (M-column by N-row) array of sample values, or MxN array of transform coefficients

3.6
Boolean decoder
arithmetic decoder that processes one Boolean element at a time, wherein each Boolean element indicates how
to refine the segmentation of a number line and hence specifies the decoded bits

3.7
Boolean decoding
process of decoding a syntax element using a Boolean decoder

3.8
byte
8-bit bit string

ISO/IEC FDIS 14496-31:2017(E)

2 © ISO/IEC 2017 – All rights reserved

3.9
byte aligned
position that is an integer multiple of eight, such that the first bit in the bitstream has position 0, and the position
of other bits is stated relative to this position

3.10
chroma
sample array or single sample, denoted by the symbols Cb and Cr, representing one of the two colour difference
signals related to the primary colours

3.11
coded frame
set of syntax elements that represents a frame in the bitstream

3.12
component
array or single sample from one of the three arrays (luma and two chroma) that compose a picture in 4:2:0
colour format

3.13
control partition
partition containing the frame header and all of the macroblock headers for a coded frame

3.14
DC transform coefficient
transform coefficient for which the frequency index in both of the two dimensions is zero

3.15
decoded frame
frame reconstructed from a coded frame by a decoder

3.16
decoder
embodiment of the decoding process

3.17
decoding process
process that derives decoded frames from syntax elements

3.18
dequantization
process in which transform coefficients are obtained by scaling the quantized transform coefficients

3.19
encoder
embodiment of an encoding process

3.20
encoding process
process not specified in this document that generates a bitstream that conforms to the specification provided in
this document

3.21
flag
binary variable

3.22
frame
array of luma samples (Y) and two corresponding arrays of chroma samples (Cb and Cr) in 4:2:0 colour format

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 3

3.23
frequency index
one-dimensional or two-dimensional index associated with a transform coefficient prior to an inverse transform
part of the decoding process

3.24
inter coding
a macroblock or frame coded using inter prediction

3.25
inter prediction
process of deriving the prediction for the current frame using previously decoded frames

3.26
intra coding
macroblock or frame coded using intra prediction

3.27
I frame
frame that may be decoded using only intra prediction

3.28
intra prediction
process of deriving the prediction value for the current sample using previously decoded sample values in the
same decoded frame

3.29
inverse transform
part of the decoding process by which a set of transform coefficients are converted into spatial-domain values

3.30
key frame
frame where the decoding process is reset, such that a key frame and all following frames are always decodable
without access to preceding frames, and such that a frame is a key frame if and only if it is an I frame

3.31
level
defined set of constraints on the permissible values for the syntax elements and syntax element parameters

3.32
luma
sample array or single sample, represented by the symbol Y, that ordinarily represents the brightness signal
related to the primary colours

3.33
macroblock
16x16 luma sample value block and its two corresponding 8x8 chroma sample value blocks

3.34
motion vector
two-dimensional vector used for inter prediction that provides an offset from the coordinates in the decoded
frame to the coordinates in a reference frame

3.35
parse
process of extracting a syntax element from a bitstream

ISO/IEC FDIS 14496-31:2017(E)

4 © ISO/IEC 2017 – All rights reserved

3.36
partitioning
process of dividing a set into subsets such that each element in the set belongs to only one subset

3.37
prediction
prediction process consisting of either inter or intra prediction

3.38
prediction frame (P frame)
frame decoded by referencing another frame

3.40
prediction process
process of estimating the decoded sample value or data element using a predictor

3.41
prediction residual
difference between the reconstructed samples and the corresponding prediction values

3.42
prediction value
combination of the previously decoded sample values or data elements, used in the prediction process of the
next sample value or data element

3.43
profile
subset of syntax, semantics and processes defined in this document

3.44
quantization parameter
variable used for scaling the quantized coefficients in the decoding process

3.45
quantized coefficient
transform coefficient before dequantization

3.46
random access point
point, other than the beginning of the bitstream, for starting the decoding process for the remainder of a bitstream

3.47
raster scan
mapping of a two dimensional pattern to a one dimensional pattern such that the first entries in the one
dimensional pattern are from the top row of the two dimensional pattern scanned from left to right, followed
similarly by the second, third, etc., rows of the pattern (going down) each scanned from left to right

3.48
reconstruction
addition of the decoded prediction residual and the corresponding prediction values

3.49
reference frame
previously decoded frame used during inter prediction

3.50
reserved
syntax element value which may be used to extend this specification in the future; such values are not allowed
to be present in bitstreams conforming to this version of the standard

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 5

3.51
sample
basic element of the array of the decoded frame

3.52
sample value
value of a sample, which is an integer in the range of 0 to 255, inclusive

3.53
sub-block
4x4 block

3.54
syntax element
element of data represented in the bitstream

3.55
transform coefficient
scalar quantity, considered to be in a frequency domain, that is associated with a particular one-dimensional or
two-dimensional frequency index in an inverse transform part of the decoding process

4 Symbols (and abbreviated terms)

DCT: Discrete Cosine Transform

LSB: Least Significant Bit

MB: Macroblock

MSB: Most Significant Bit

SB: Sub-block

VCB: Video Coding for Browsers

WHT: Walsh Hadamard Transform

5 Conventions

5.1 General

The mathematical operators and their precedence rules used in this document are similar to those used in the
C programming language. However, the operation of integer division with truncation is specifically defined.

In addition, an array with 2 elements used to hold a motion vector (such as Mv) can be accessed using either
normal array notation (e.g. Mv[0] and Mv[1]), or by name (i.e. Mv). The only operations defined when using
the name are assignment and equality testing. Assignment of an array is represented using the normal notation
A = B and is specified to mean the same as doing both the individual assignments A[0] = B[0] and A[1] =
B[1]. Equality testing of 2 motion vectors is represented using the notation A == B and is specified to mean the
same as (A[0] == B[0] && A[1] == B[1]).

5.2 Arithmetic operators

+ Addition

− Subtraction (as a binary operator) or negation (as a unary prefix operator)

* Multiplication

ISO/IEC FDIS 14496-31:2017(E)

6 © ISO/IEC 2017 – All rights reserved

/ Integer division with truncation of the result toward zero. For example, 7/4 and (−7)/(−4) are
truncated to 1, and −7/4 and 7/(−4) are truncated to −1.

÷ Used to denote division in mathematical equations where no truncation or rounding is intended.

a % b Remainder of a divided by b, defined only for a >= 0 and b > 0.

5.3 Logical operators

a && b Logical AND operation between a and b.

a || b Logical OR operation between a and b.

! Logical NOT operation.

5.4 Relational operators

> Greater than.

>= Greater than or equal to.

< Less than.

<= Less than or equal to.

== Equal to.

!= Not equal to.

5.5 Bitwise operators

& AND operation.

| OR operation.

~ Negation operation.

a >> b Shift a in 2’s complement binary integer representation format to the right by b bit positions. This
operator is only used with b being a non-negative integer. Bits shifted into the MSBs as a result of the
right shift have a value equal to the MSB of a prior to the shift operation.

a << b Shift a in 2’s complement binary integer representation format to the left by b bit positions. This
operator is only used with b being a non-negative integer. Bits shifted into the LSBs as a result of the
left shift have a value equal to 0.

5.6 Assignment operators

= Assignment operator

++ Increment, x++ is equivalent to x = x + 1. When this operator is used for an array index, the variable
value is obtained before the increment operation.

−− Decrement, i.e. x−− is equivalent to x = x − 1. When this operator is used for an array index the
variable value is obtained before the decrement operation.

+= Addition assignment operator, for example:

x += 3 corresponds to x = x + 3, and,

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 7

x += (−3) is equivalent to x = x + (−3).

−= Subtraction assignment operator, for example:

x −= 3 corresponds to x = x − 3, and,

x −= (−3) is equivalent to x = x − (−3).

5.7 Range notation

x = y..z x takes on integer values starting from y to z, inclusive, with x, y and z being integer numbers
and z being greater than y.

5.8 Mathematical functions

The following mathematical functions are defined as follows:

Abs(x) =
x; x >= 0

-x; x < 0

ì
í
ï

îï

),255,0(Clip3)(Clip1 xx =

Clip3(x, y, z) =

x; z < x

y; z > y

z; otherwise

ì

í
ï

î
ï
ï

î
í
ì

>
<=

=
yxy

yxx
yx

;

;
),Min(

î
í
ì

<
>=

=
yxy

yxx
yx

;

;
),Max(

5.9 Order of operation precedence

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules
apply:

– Operations of a higher precedence are evaluated before any operation of a lower precedence.

– Operations of the same precedence are evaluated sequentially from left to right.

Table 1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a
higher precedence.

NOTE – For those operators that are also used in the C programming language, the order of precedence used in this
document is the same as used in the C programming language.

Table 1 — Operation precedence from highest (at top of the table) to lowest (at the bottom of the table)

operations (with operands x, y, and z)

ISO/IEC FDIS 14496-31:2017(E)

8 © ISO/IEC 2017 – All rights reserved

"x++", "x−−"

"!x", "−x" (as a unary prefix operator)

xy

"x * y", "x / y", "x ÷ y", "
y

x
", "x % y"

"x + y", "x − y" (as a two argument operator), 
=

y

xi

if)(

"x << y", "x >> y"

"x < y", "x <= y", "x > y", "x >= y"

"x == y", "x != y"

"x & y"

"x | y"

"x || y"

"x ? y : z"

"x..y"

"x = y", "x += y", "x −= y"

5.10 Method of describing bitstream syntax

The bitstream syntax is specified in Section 6 “Bitstream Syntax” in a style similar to the C programming
language. A syntax element is completely described by its name together with either one or two descriptors for
its method of coded representation. Syntax element names consist of descriptive groups of lowercase letters
separated by an underscore character. The decoding process behaves according to the value of the syntax
element and to the values of previously decoded syntax elements.

A syntax element is represented in bold type in two places; where it is read from the bitstream (in Section 6)
and where it is defined (in Section 7). Otherwise, syntax elements are represented in non-bold type throughout.

In some cases the syntax tables may use the values of other variables derived from syntax elements values.
Such variables appear in the syntax tables, or text, named by a mixture of lowercase and uppercase letters
without any underscore characters. Variables starting with an uppercase letter are derived for the decoding of
the current syntax structure and all depending syntax structures. Variables starting with an uppercase letter may
be used in the decoding process for later syntax structures without mentioning the originating syntax structure
of the variable. Variables starting with a lowercase letter are only used within the subclause from which they are
derived.

The association of values and names is specified in the text. In some cases, “mnemonic” names for syntax
elements or variables are used interchangeably with their numerical values. The names are constructed from

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 9

one or more groups of letters separated by an underscore character. Each group starts with an uppercase letter
and may contain more uppercase letters.

Hexadecimal notation, indicated by prefixing the hexadecimal number by “0x”, may be used when the number
of bits is an integer multiple of 4. For example, “0x1a” represents a bit-string “0001 1010”.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any
value other than zero.

The following table lists examples of the syntax specification format. When syntax_element appears (with bold
face font), it specifies that a syntax element is parsed from a bitstream.

Table 2 — Examples of syntax specification formats

 type
/* A statement can be a syntax element with associated descriptor or can be an
expression used to specify its existence, type, and value, as in the following
examples */

syntax_element ue(v)
conditioning statement

/* A group of statements enclosed in brackets is a compound statement and is
treated functionally as a single statement. */

{
 statement
 statement
 …
}

/* A “while” structure specifies that the statement is to be evaluated repeatedly
while the condition remains true. */

while (condition)
 statement

/* A “do … while” structure executes the statement once, and then tests the
condition. It repeatedly evaluates the statement while the condition remains true.
*/

do
 statement
while (condition)

/* An “if … else” structure tests the condition first. If it is true, the primary
statement is evaluated. Otherwise, the alternative statement is evaluated. If the
alternative statement is unnecessary to be evaluated, the “else” and
corresponding alternative statement can be omitted. */

if (condition)
 primary statement
else
 alternative statement

/* A “for” structure evaluates the initial statement at the beginning then tests the
condition. If it is true, the primary and subsequent statements are evaluated until
the condition becomes false. */

for (initial statement; condition; subsequent statement)
 primary statement

ISO/IEC FDIS 14496-31:2017(E)

10 © ISO/IEC 2017 – All rights reserved

5.11 Functions

Functions used for syntax specification are defined in this clause.

The specification of these functions makes use of a bitstream position indicator. This bitstream position indicator
locates the position of the bit that is going to be read next.

get_position(): Return the value of a bitstream position indicator.

init_bool(b, sz): Initialize the decoding process for Boolean decoder b with a size of sz as specified
in clause 9.2.2.

set_bool(b): Change to using Boolean decoder b as specified in clause 9.2.3.

5.12 Descriptors

5.12.1 General

The following descriptors specify the parsing process of each syntax element.

5.12.2 f(n)

An unsigned n-bit number appearing directly in a bitstream. The bits are read from high to low order. The
parsing process specified in clause 9.1 is invoked and the syntax element is set equal to the return value.

5.12.3 B(p)

A single Boolean encoded bit with estimated probability p÷256 of being 0. The syntax element is set equal to
the return value of read_bool(p) (see clause 9.2.4 for a specification of this process).

NOTE p might be equal to 0, but there is no special treatment of this case.

5.12.4 u(n)

An unsigned Boolean encoded n-bit number encoded as n flags (a "literal"). The bits are read from high to low
order. The syntax element is set equal to the return value of read_literal(n) (see clause 9.2.5 for a specification
of this process).

5.12.5 F

A single Boolean encoded bit with estimated probability 50% of being 0. The syntax element is set equal to the
return value of read_bool(128).

NOTE A flag is the same as B(128) or u(1)

5.12.6 P(7)

A Boolean encoded 7-bit specification of an 8-bit estimated probability. Coded as an u(7) number x; the resulting
8-bit estimated probability is x ? x << 1 : 1.

5.12.7 P(8)

A Boolean encoded 8-bit estimated probability. This is the same as u(8), but this notation is used to emphasize
that an estimated probability is being coded.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 11

5.12.8 T

A Boolean tree-encoded value from an alphabet. Such values represent the leaves of a binary tree. The non-
leaf nodes of the tree have associated probabilities p and are represented by B(p). A zero represents choosing
the left branch below the current node and a one represents choosing the right branch. Each element of this
type has an associated table of estimated node probability values defined in this document. Reference is made
to those tables when required.

Every leaf value whose tree depth is x is decoded using x B(p) values.

There are many ways that a given alphabet can be so represented. The choice of tree has little impact on
datarate but does affect decoder performance.

6 Bitstream syntax

6.1 General

This clause specifies the bitstream syntax in a tabular form. The meaning of each of the syntax elements is
presented in clause 7.

6.2 Frame syntax

A bitstream consists of a sequence of one or more coded frames ordered in decoding order. Methods of framing
the coded frames in a container format are outside the scope of this document. Each coded frame in turn is
given to the decoding process as a bit string together with a variable, named “sz” in the following table, that
specifies the total number of bytes in the coded frame:

Table 3 — Frame syntax

frame(sz) { Type

 uncompressed_header()

 sz −= ControlPartitionSize + HeaderSize

 init_bool(0, ControlPartitionSize)

 set_bool(0)

 compressed_header()

 for (i = 0; i < NbrPartitions − 1; i++) {

 partition_size_low f(8)

 partition_size_mid f(8)

 partition_size_high f(8)

 sz −= partitionSize[i] + 3

 }

 partitionSize[NbrPartitions − 1] = sz

 for (b = 0; b < NbrPartitions; b++)

 init_bool(b + 1, partitionSize[b])

 for (col = 0; col < MbCols; col++) {

 for (i = 0; i < 9; i++)

 AboveToken[col][i] = 0

 MbRefFrame[−1][col] = 0

 MbSplit[−1][col] = 0

 }

 MbRefFrame[−1][−1] = 0

 MbSplit[−1][−1] = 0

ISO/IEC FDIS 14496-31:2017(E)

12 © ISO/IEC 2017 – All rights reserved

 for (row = 0; row < MbRows; row++) {

 for (i = 0; i < 9; i++)

 LeftToken[i] = 0

 MbRefFrame[row][−1] = 0

 MbSplit[row][−1] = 0

 for (col = 0; col < MbCols; col++) {

 set_bool(0)

 mb_header(row, col)

 set_bool(1 + (row % NbrPartitions))

 prediction_residual_data(row, col)

 }

 }

}

6.3 Uncompressed header syntax

uncompressed_header() { Type

 control_partition_size_low f(3)

 show_frame f(1)

 version_number f(3)

 frame_type f(1)

 control_partition_size_mid f(8)

 control_partition_size_high f(8)

 if (keyFrame) {

 sync_byte_0 f(8)

 sync_byte_1 f(8)

 sync_byte_2 f(8)

 frame_width_low f(8)

 horizontal_scale f(2)

 frame_width_high f(6)

 frame_height_low f(8)

 vertical_scale f(2)

 frame_height_high f(6)

 HeaderSize = 10

 } else

 HeaderSize = 3

}

6.4 Compressed header syntax

6.4.1 General

compressed_header() { Type

 if (keyFrame) {

 colour_space u(1)

 clamping_type u(1)

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 13

 }

 segmentation_enabled u(1)

 if (segmentation_enabled)

 update_segmentation()

 filter_type u(1)

 loop_filter_level u(6)

 sharpness_level u(3)

 mb_lf_adjustments()

 log2_nbr_of_dct_partitions u(2)

 quant_indices()

 if (keyFrame)

 refresh_entropy_probs u(1)

 else {

 refresh_ref1_frame u(1)

 refresh_ref2_frame u(1)

 if (!refresh_ref1_frame)

 copy_buffer_to_ref1 u(2)

 if (!refresh_ref2_frame)

 copy_buffer_to_ref2 u(2)

 sign_bias_ref1 u(1)

 sign_bias_ref2 u(1)

 refresh_entropy_probs u(1)

 refresh_ref0 u(1)

 }

 token_prob_update()

 mb_has_skip_coeff u(1)

 if (mb_has_skip_coeff)

 prob_skip_false P(8)

 if (!KeyFrame) {

 prob_intra P(8)

 prob_ref0 P(8)

 prob_ref1 P(8)

 intra_16x16_prob_update_flag u(1)

 if (intra_16x16_prob_update_flag)

 for (i = 0; i < 4; i++)

 intra_16x16_prob[i] P(8)

 intra_chroma_prob_update_flag u(1)

 if (intra_chroma_prob_update_flag)

 for (i = 0; i < 3; i++)

 intra_chroma_prob[i] P(8)

 mv_prob_update()

 }

}

ISO/IEC FDIS 14496-31:2017(E)

14 © ISO/IEC 2017 – All rights reserved

6.4.2 Segment based adjustments syntax

update_segmentation() { Type

 update_mb_segmentation_map u(1)

 update_segment_feature_data u(1)

 if (update_segment_feature_data) {

 segment_feature_mode u(1)

 for (i = 0; i < 4; i++) {

 quantizer_update u(1)

 if (quantizer_update) {

 quantizer_update_value u(7)

 quantizer_update_sign u(1)

 }

 }

 for (i = 0; i < 4; i++) {

 loop_filter_update u(1)

 if (loop_filter_update) {

 lf_update_value u(6)

 lf_update_sign u(1)

 }

 }

 }

 if (update_mb_segmentation_map)

 for (i = 0; i < 3; i++) {

 segment_prob_update u(1)

 if (segment_prob_update)

 segment_prob[i] P(8)

 else

 segment_prob[i] = 255

 }

}

6.4.3 Loop filter adjustments syntax

mb_lf_adjustments() { Type

 loop_filter_adj_enable u(1)

 if (loop_filter_adj_enable) {

 mode_ref_lf_delta_update u(1)

 if (mode_ref_lf_delta_update) {

 for (i = 0; i < 4; i++) {

 ref_frame_delta_update_flag u(1)

 if (ref_frame_delta_update_flag) {

 delta_magnitude u(6)

 delta_sign u(1)

 }

 }

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 15

 for (i = 0; i < 4; i++) {

 mb_mode_delta_update_flag u(1)

 if (mb_mode_delta_update_flag) {

 mode_delta_magnitude u(6)

 mode_delta_sign u(1)

 }

 }

 }

 }

}

6.4.4 Quantizer indices syntax

quant_indices() { Type

 y_ac_qi u(7)

 y_dc_delta_present u(1)

 if (y_dc_delta_present) {

 y_dc_delta_magnitude u(4)

 y_dc_delta_sign u(1)

 }

 y2_dc_delta_present u(1)

 if (y2_dc_delta_present) {

 y2_dc_delta_magnitude u(4)

 y2_dc_delta_sign u(1)

 }

 y2_ac_delta_present u(1)

 if (y2_ac_delta_present) {

 y2_ac_delta_magnitude u(4)

 y2_ac_delta_sign u(1)

 }

 uv_dc_delta_present u(1)

 if (uv_dc_delta_present) {

 uv_dc_delta_magnitude u(4)

 uv_dc_delta_sign u(1)

 }

 uv_ac_delta_present u(1)

 if (uv_ac_delta_present) {

 uv_ac_delta_magnitude u(4)

 uv_ac_delta_sign u(1)

 }

}

ISO/IEC FDIS 14496-31:2017(E)

16 © ISO/IEC 2017 – All rights reserved

6.4.5 Token probability update syntax

token_prob_update() { Type

 for (i = 0; i < 4; i++)

 for (j = 0; j < 8; j++)

 for (k = 0; k < 3; k++)

 for (t = 0; t < 11; t++) {

 coeff_prob_update_flag B(CoeffUpdateProbs[i][j][k][t])

 if (coeff_prob_update_flag)

 coeff_prob[i][j][k][t] P(8)

 }

}

6.4.6 MV probability update syntax

mv_prob_update() { Type

 for (i = 0; i < 2; i++)

 for (j = 0; j < 19; j++) {

 mv_prob_update_flag B(MvUpdateProbs[i][j])

 if (mv_prob_update_flag)

 mv_prob[i][j] P(7)

 }

}

6.5 Macroblock data syntax

6.5.1 Macroblock header syntax

6.5.2 General

mb_header(row, col) { Type

 if (update_mb_segmentation_map)

 segment_id T

 if (mb_has_skip_coeff)

 mb_skip_coeff B(prob_skip_false)

 if (!KeyFrame)

 is_inter_mb B(prob_intra)

 if (is_inter_mb) {

 mb_ref_frame_sel1 B(prob_ref0)

 if (mb_ref_frame_sel1)

 mb_ref_frame_sel2 B(prob_ref1)

 mv_mode T

 if (mv_mode == MV_SPLIT) {

 mv_split_mode T

 for (i = 0; i < numMvs; i++) {

 sub_mv_mode T

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 17

 if (sub_mv_mode == NEW4X4) {

 SubMvdy = mv_component(0)

 SubMvdx = mv_component(1)

 }

 }

 } else if (mv_mode == MV_NEW) {

 Mvdy = mv_component(0)

 Mvdx = mv_component(1)

 }

 } else { /* intra mb */

 intra_y_mode T

 if (intra_y_mode == B_PRED)

 for (block = 0; block < 16; block++)

 intra_b_mode[block] T

 intra_uv_mode T

 }

}

6.5.2.1 MV component syntax

mv_component(cp) { Type

 mv_long B(mv_prob[cp][0])

 if (mv_long) {

 c = 0

 for (i = 0; i < 3; i++) {

 mv_bit B(mv_prob[cp][9 + i])

 c += mv_bit << i

 }

 for (i = 9; i > 3; i−−) {

 mv_bit B(mv_prob[cp][9 + i])

 c += mv_bit << i

 }

 if (c & 0xfff0) {

 mv_bit B(mv_prob[cp][9 + 3])

 c += mv_bit << 3

 } else

 c += 8

 } else {

 mv_short T

 c = mv_short

 }

 if (c) {

 mv_sign B(mv_prob[cp][1])

 if (mv_sign)

 c = −c

 }

 return c

ISO/IEC FDIS 14496-31:2017(E)

18 © ISO/IEC 2017 – All rights reserved

}

6.5.3 Prediction residual data syntax

prediction_residual_data(row, col) { Type

 HasNonZero = 0

 if ((is_inter_mb && mv_mode != MV_SPLIT)

 || (!is_inter_mb && intra_y_mode != B_PRED))

 HasY2 = 1

 else

 HasY2 = 0

 if (mb_skip_coeff == 0) {

 if (HasY2) {

 prediction_residual_block(24, 0) /* Y2 */

 LeftToken[8] = AboveToken[col][8] = NonZero[24]

 for (i = 0; i < 16; i++)

 prediction_residual_block(i, 1) /* Y */

 } else

 for (i = 0; i < 16; i++)

 prediction_residual_block(i, 0) /* Y */

 for (i = 0; i < 8; i++)

 prediction_residual_block(16 + i, 0) /* 4 Cb, 4 Cr */

 for (i = 0; i < 4; i++) {

 LeftToken[i] = NonZero[i * 4 + 3]

 AboveToken[col][i] = NonZero[12 + i]

 }

 for (i = 0; i < 2; i++) {

 LeftToken[4 + i] = NonZero[16 + i * 2 + 1]

 AboveToken[col][4 + i] = NonZero[16 + 2 + i]

 LeftToken[6 + i] = NonZero[16 + 4 + i * 2 + 1]

 AboveToken[col][6 + i] = NonZero[16 + 4 + 2 + i]

 }

 } else

 for (i = 0; i < (HasY2 ? 9 : 8); i++) {

 LeftToken[i] = 0

 AboveToken[col][i] = 0

 }

}

6.5.4 Prediction residual block syntax

prediction_residual_block(block, firstCoeff) { Type

 lastCoeff = 1

 breakLoop = 0

 for (i = firstCoeff; i < 16 && !breakLoop; i++) {

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 19

 coeff_token T

 if (coeff_token == EOB)

 breakLoop = 1

 else {

 if (coeff_token >= DCT_CAT1) {

 v = 0

 for (j = 0; j < catNum; j++) {

 extra_bit B(catProbs[coeff_token][j])

 v += extra_bit

 }

 coeffVal = catBase + v

 } else

 coeffVal = coeff_token

 if (coeffVal != 0) {

 coef_sign u(1)

 if (coef_sign)

 coeffVal = −coeffVal

 }

 lastCoeff = coeffVal

 y = zigzag[i] >> 2

 x = zigzag[i] − y * 4

 TransCoeff[block][x][y] = coeffVal

 }

 }

 if (i == firstCoeff)

 NonZero[block] = 0

 else {

 NonZero[block] = 1

 HasNonZero = 1

 }

 for (; i < 16; i++) {

 y = zigzag[i] >> 2

 x = zigzag[i] − y * 4

 TransCoeff[block][x][y] = 0

 }

}

The zigzag scan is specified as follows:

zigzag[16] = {

 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15

}

ISO/IEC FDIS 14496-31:2017(E)

20 © ISO/IEC 2017 – All rights reserved

7 Bitstream semantics

7.1 General

Semantics associated with the syntax structures and with the syntax elements within these structures are
specified in this clause. When the semantics of a syntax element are specified using a table or a set of tables,
any values that are not specified in the table(s) shall not be present in the bitstream unless otherwise specified
in this document. This clause specifies the meaning of the syntax elements.

7.2 Frame semantics

A bitstream consists of a sequence of one or more coded frames. The first frame in a bitstream shall be a key
frame.

partition_size_low, partition_size_mid, and partition_size_high combine to give the number of bytes in the
ith partition of the prediction residual data. The variable partitionSize[i] is specified as:

partitionSize[i] = partition_size_low + (partition_size_mid << 8) + (partition_size_high << 16)

7.3 Uncompressed header semantics

frame_type specifies whether the current frame is a P frame. The variable KeyFrame is specified as follows:

 If frame_type is equal to 0, KeyFrame is set equal to 1.

 Otherwise (frame_type is equal to 1), KeyFrame is set equal to 0.

A frame is a key frame if and only if KeyFrame is equal to 1.

When KeyFrame is equal to 1, the saved probability tables are reset to their default values as follows:

for (i = 0; i < 4; i++)
 SavedIntra16x16Prob[i] = DefaultIntra16x16Prob[i]
for (i = 0; i < 3; i++)
 SavedIntraChromaProb[i] = DefaultIntraChromaProb[i]
for (i = 0; i < 4; i++)
 for (j = 0; j < 8; j++)
 for (k = 0; k < 3; k++)
 for (t = 0; t < 11; t++)
 SavedCoeffProb[i][j][k][t] = DefaultCoeffProb[i][j][k][t]
for (i = 0; i < 2; i++)
 for (j = 0; j < 19; j++)
 SavedMvProb[i][j] = DefaultMvProb[i][j]

The saved probability tables persist across frames.

The first coded frame shall have KeyFrame equal to 1.

version_number specifies the filters used for reconstruction and loop filtering as follows:

Table 4 — convolution filter and loop filter types according to version_number

version_number Convolution Filter Loop Filter
0 Bicubic Normal

1 Bilinear Simple

2 Bilinear None

3 None None

4, 5, 6, 7 Reserved for future use

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 21

The version_number specifies the worst case loop filter that may be present. A bitstream may have
version_number equal to 0, and filter_type equal to 1 indicating the simple loop filter is to be used.

show_frame specifies whether the current frame is meant to be displayed.

control_partition_size_low, control_partition_size_mid, control_partition_size_high specify the size of
the first partition, called the control partition, in bytes, excluding the uncompressed data chunk. The variable
ControlPartitionSize is set equal to control_partition_size_low + (control_partition_size_mid << 3) +
(control_partition_size_high << 11).

sync_byte_0 shall be 0x9d.

sync_byte_1 shall be 0x01.

sync_byte_2 shall be 0x2a.

horizontal_scale and vertical_scale specify the frame scaling ratio for each dimension as follows:

Table 5 — Frame width and frame height scaling ratio specifications

Value Up-scaling ratio
0 1 : 1

1 5 : 4

2 5 : 3

3 2 : 1

NOTE 1 Up-scaling does not affect the reconstruction buffer, which is maintained at the encoded resolution.

frame_width_low, frame_width_high and frame_height_low, frame_height_high specify the dimensions of
the key frame and the following P frames. The variables FrameWidth and FrameHeight are specified as follows:

 FrameWidth = (frame_width_high << 8) + frame_width_low

 FrameHeight = (frame_height_high << 8) + frame_height_low

Both FrameWidth and FrameHeight shall be greater than 0. The variables MbRows and MbCols are defined
as follows:

 MbCols = (FrameWidth + 15) >> 4

 MbRows = (FrameHeight + 15) >> 4

The decoding process operates on complete macroblocks. In a decoder implementation, the current frame and
reference frame buffers shall have enough storage to hold all the sample values for a frame that is MbCols
macroblocks wide, and MbRows macroblocks high.

NOTE 2 The frame dimensions are not necessarily evenly divisible by 16. The right-most MbCols * 16 − FrameWidth
columns and the upper-most MbRows * 16 − FrameHeight rows are not actually part of the decoded frame and are discarded
from the final output. However, these "excess samples" are maintained in the internal reconstruction buffer that is used to
predict subsequent frames.

ISO/IEC FDIS 14496-31:2017(E)

22 © ISO/IEC 2017 – All rights reserved

7.4 Compressed header semantics

7.4.1 General

colour_space shall be 0 for bitstreams conforming to this document. All other values are reserved for future
use.

clamping_type specifies whether clamping can be ignored in the reconstruction process for this frame and the
following P frames.

The sample value clamping type bit is interpreted as follows:

 0: Reconstructed sample values need to be clamped between 0 and 255 (inclusive).

 1: Reconstructed sample values are guaranteed to be between 0 and 255; no clamping is necessary.

When clamping_type is not present, it is inferred to be equal to the value in the previous frame.

segmentation_enabled specifies that segmentation is used for the current frame.

filter_type specifies the loop filter type. Two types are defined in this document: the “normal” filter type
(corresponding to a value of 0) and the “simple” loop filter type (corresponding to a value of 1).

If version_number is equal to 1, then filter_type shall be equal to 1.

loop_filter_level specifies one of the control parameters of the deblocking filter.

sharpness_level specifies one of the control parameters of the deblocking filter.

log2_nbr_of_dct_partitions determines the number of separate partitions containing the DCT coefficients of
the macroblocks. The variable NbrPartitions is set equal to 1 << log2_nbr_of_dct_partitions.

refresh_entropy_probs specifies whether the updated token probabilities are also used for subsequent frames.

refresh_ref1_frame specifies whether the current decoded frame refreshes the Ref1 reference frame. When
not present, it is inferred equal to 1.

refresh_ref2_frame specifies whether the current decoded frame refreshes the Ref2 reference frame. When
not present, it is inferred equal to 1.

copy_buffer_to_ref1 specifies how to update the Ref1 reference frame. When not present, it is inferred equal
to 0. The value is interpreted as follows:

 0: no change is made to the Ref1 frame.

 1: Ref0 is to be copied to the Ref1 frame.

 2: Ref2 is to be copied to the Ref1 frame.

copy_buffer_to_ref1 shall not be equal to 3.

copy_buffer_to_ref2 specifies how to update the Ref2 frame. When not present, it is inferred equal to 0. The
value is interpreted as follows:

 0: no change is made to the Ref2 frame.

 1: Ref0 is to be copied to the Ref2 frame.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 23

 2: Ref1 frame is to be copied to the Ref2 frame.

copy_buffer_to_ref2 shall not be equal to 3.

sign_bias_ref1 controls the sign of motion vectors when the Ref1 frame is referenced.

sign_bias_ref2 controls the sign of motion vectors when the Ref2 frame is referenced.

The array entries of RefFrameSignBias are set as follows:

 RefFrameSignBias[1] = 0

 RefFrameSignBias[2] = sign_bias_ref1

 RefFrameSignBias[3] = sign_bias_ref2

refresh_ref0 specifies whether the current decoded frame refreshes the Ref0 reference buffer. When
refresh_ref0 is not present, it is inferred equal to 1.

mb_has_skip_coeff specifies whether mb_skip_coeff is present in the macroblock headers.

prob_skip_false specifies the probability that the macroblock is not skipped.

prob_intra specifies the probability that the macroblock uses intra coding.

prob_ref0 specifies the probability that the Ref0 reference frame is used for inter prediction.

prob_ref1 specifies the probability that the Ref1 reference frame is used for inter prediction.

intra_16x16_prob_update_flag specifies whether the branch probabilities used in the decoding of the luma
intra prediction mode are updated.

intra_16x16_prob[i] specifies the branch probabilities of the luma intra prediction mode decoding tree. When
not present in a bitstream it is inferred to be equal to SavedIntra16x16Prob[i].

intra_chroma_prob_update_flag specifies whether the branch probabilities used in the decoding of the
chroma intra-prediction mode are updated.

intra_chroma_prob[i] specifies the branch probabilities of the chroma intra prediction mode decoding tree.
When not present in a bitstream it is inferred to be equal to SavedIntraChromaProb[i].

7.4.2 Segment based adjustments semantics

When segment adaptive adjustments are enabled, each macroblock is assigned a segment ID. Macroblocks
with the same segment ID belong to the same segment and have the same adaptive adjustments over default
baseline values for the frame. The adjustments can be quantizer level or loop filter strength.

update_mb_segmentation_map specifies whether the MB segmentation map is updated in the current frame.
When not present in a bitstream it is inferred to be 0.

update_segment_feature_data specifies whether the segment feature data is updated in the current frame.

segment_feature_mode specifies the feature data update mode, 0 for delta and 1 for the absolute value. When
not present in a bitstream, it is inferred as follows:

 If KeyFrame is equal to 1, segment_feature_mode is set equal to 0.

 Otherwise, segment_feature_mode is left at the value it took in the previous frame.

ISO/IEC FDIS 14496-31:2017(E)

24 © ISO/IEC 2017 – All rights reserved

quantizer_update specifies if the quantizer value is set for the ith segment.

quantizer_update_value specifies the update value for the segment quantizer.

quantizer_update_sign specifies the update sign for the segment quantizer.

The variable Quantizer[i] is set as follows:

 If update_segment_feature_data is equal to 0 and KeyFrame is equal to 1, Quantizer[i] is set equal to 0.

 Otherwise, if update_segment_feature_data is equal to 0, Quantizer[i] is left at the value it took in the
previous frame.

 Otherwise, if quantizer_update is equal to 0, Quantizer[i] is set equal to 0.

 Otherwise, if quantizer_update_sign is equal to 0, Quantizer[i] is set equal to quantizer_update_value.

 Otherwise, Quantizer[i] is set equal to −quantizer_update_value (the negative of quantizer_update_value).

 loop_filter_update specifies if the loop filter level is updated for the ith segment.

 lf_update_value specifies the update value for the loop filter level.

 lf_update_sign specifies the update sign for the loop filter level.

The variable LfLevel[i] is set as follows:

 If update_segment_feature_data is equal to 0 and KeyFrame is equal to 1, LfLevel[i] is set equal to 0.

 Otherwise, if update_segment_feature_data is equal to 0, LfLevel[i] is left at the value it took in the previous
frame.

 Otherwise, if lf_update_value is equal to 0, LfLevel[i] is set equal to 0.

 Otherwise, if lf_update_sign is equal to 0, LfLevel[i] is set equal to lf_update_value.

 Otherwise, LfLevel [i] is set equal to −lf_update_value (the negative of lf_update_value).

segment_prob_update specifies whether the branch probabilities used to decode the segment_id in the
macroblock header are decoded from the stream or are set to the default value of 255.

segment_prob[i] specifies the branch probabilities of the segment_id decoding tree.

7.4.3 Loop filter adjustments semantics

The frame filter level may be adjusted per macroblock based on a macroblock's prediction mode and reference
frame. The per-macroblock adjustment is done through delta values against the default loop filter level for the
current frame.

loop_filter_adj_enable specifies whether the MB-level loop filter adjustment (based on the used reference
frame and coding mode) is enabled for the current frame.

mode_ref_lf_delta_update specifies whether the delta values used in an adjustment are updated in the current
frame.

ref_frame_delta_update_flag specifies whether the adjustment delta value corresponding to a certain used
reference frame is updated.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 25

delta_magnitude is the absolute value of the delta value.

delta_sign is the sign of the delta value.

The variable RefDelta[i] is set as follows:

 If loop_filter_adj_enable is equal to 0 and KeyFrame is equal to 1, RefDelta[i] is set equal to 0.

 Otherwise, if loop_filter_adj_enable is equal to 0, RefDelta[i] is left at the value it took in the previous
frame.

 Otherwise, if ref_frame_delta_update_flag is equal to 0, RefDelta[i] is set equal to 0.

 Otherwise, if delta_sign is equal to 0, RefDelta[i] is set equal to delta_magnitude.

 Otherwise, RefDelta[i] is set equal to −delta_magnitude (the negative of delta_magnitude).

mb_mode_delta_update_flag specifies if the adjustment delta value corresponding to a certain MB prediction
mode is updated.

mode_delta_magnitude is the absolute value of the delta value.

mode_delta_sign is the sign of the delta value.

The variable ModeDelta[i] is set as follows:

 If loop_filter_adj_enable is equal to 0 and KeyFrame is equal to 1, ModeDelta[i] is set equal to 0.

 Otherwise if loop_filter_adj_enable is equal to 0, ModeDelta[i] is left at the value it took in the previous
frame.

 Otherwise if mb_mode_delta_update_flag is equal to 0, ModeDelta[i] is set equal to 0.

 Otherwise, if mode_delta_sign is equal to 0, ModeDelta[i] is set equal to mode_delta_magnitude.

 Otherwise, ModeDelta[i] is set equal to −mode_delta_magnitude (the negative of mode_delta_magnitude).

7.4.4 Quantizer indices semantics

All prediction residual signals are specified via a quantized 4x4 transform coefficients for the Y, Cb, Cr, or Y2
sub-blocks of a macroblock. Before the inverse transform to the spatial domain, each decoded coefficient is
multiplied by one of six dequantization factors, the choice of which depends on the plane (Y, chroma = Cb or
Cr, Y2) and coefficient position (DC = coefficient 0, AC = coefficients 1…15). The six values are specified using
7-bit indices into fixed tables.

y_ac_qi is the dequantization table index used for the luma AC coefficients (and other coefficient groups if no
delta value is present).

y_dc_delta_present specifies if the stream contains a delta value that is added to the baseline index to obtain
the luma DC coefficient dequantization index.

y_dc_delta_magnitude is the magnitude of the delta value. When not present the value is inferred equal to 0.

y_dc_delta_sign is the sign of the delta value. When not present the value is inferred equal to 0.

y2_dc_delta_present specifies if the stream contains a delta value that is added to the baseline index to obtain
the Y2 block DC coefficient dequantization index.

ISO/IEC FDIS 14496-31:2017(E)

26 © ISO/IEC 2017 – All rights reserved

y2_dc_delta_magnitude is the magnitude of the delta value. When not present the value is inferred equal to
0.

y2_dc_delta_sign is the sign of the delta value. When not present the value is inferred equal to 0.

y2_ac_delta_present specifies if the stream contains a delta value that is added to the baseline index to obtain
the Y2 block AC coefficient dequantization index.

y2_ac_delta_magnitude is the magnitude of the delta value. When not present the value is inferred equal to 0.

y2_ac_delta_sign is the sign of the delta value. When not present the value is inferred equal to 0.

uv_dc_delta_present specifies if the stream contains a delta value that is added to the baseline index to obtain
the chroma DC coefficient dequantization index.

uv_dc_delta_magnitude is the magnitude of the delta value. When not present the value is inferred equal to
0.

uv_dc_delta_sign is the sign of the delta value. When not present the value is inferred equal to 0.

uv_ac_delta_present specifies if the stream contains a delta value that is added to the baseline index to obtain
the chroma AC coefficient dequantization index.

uv_ac_delta_magnitude is the magnitude of the delta value. When not present the value is inferred equal to
0.

uv_ac_delta_sign is the sign of the delta value. When not present the value is inferred equal to 0.

The variables y_dc_delta_q, y2_dc_delta_q, y2_ac_delta_q, uv_dc_delta_q, uv_ac_delta_q are derived as
follows:

 y_dc_delta_q = (y_dc_delta_sign ? −1 : 1) * y_dc_delta_magnitude

 y2_dc_delta_q = (y2_dc_delta_sign ? −1 : 1) * y2_dc_delta_magnitude

 y2_ac_delta_q = (y2_ac_delta_sign ? −1 : 1) * y2_ac_delta_magnitude

 uv_dc_delta_q = (uv_dc_delta_sign ? −1 : 1) * uv_dc_delta_magnitude

 uv_ac_delta_q = (uv_ac_delta_sign ? −1 : 1) * uv_ac_delta_magnitude

7.4.5 Token probability update semantics

coeff_prob_update_flag specifies if the corresponding branch probability is updated in the current frame.

coeff_prob[i][j][k][t] is the new branch probability. When coeff_prob is not present in a bitstream it is inferred
to be equal to SavedCoeffProb[i][j][k][t].

7.4.6 MV probability update semantics

mv_prob_update_flag specifies if the corresponding MV decoding probability is updated in the current frame.

mv_prob[i][j] is the updated probability. When mv_prob[i][j] is not present in a bitstream it is inferred to be
equal to SavedMvProb[i][j].

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 27

7.5 Macroblock data semantics

7.5.1 Macroblock header semantics

7.5.1.1 General

segment_id specifies to which segment the macroblock belongs. When not present in a bitstream it is inferred
as follows:

 If KeyFrame is equal to 1, then segment_id is set equal to 0.

 Otherwise (KeyFrame is equal to 0), then segment_id is set equal to SavedSegmentId[row][col].

After segment_id has been extracted or inferred, it is saved in the array SavedSegmentId as follows:

 SavedSegmentId[row][col] = segment_id

mb_skip_coeff specifies whether the macroblock does not contain any coded coefficients. When not present
in a bitstream it is inferred to be equal to 0.

is_inter_mb specifies whether the macroblock is inter coded. When not present in a bitstream it is inferred to
be equal to 0.

If is_inter_mb is equal to 0, the variable MbRefFrame[row][col] is set equal to 0.

mb_ref_frame_sel1 and mb_ref_frame_sel2 specify the reference frame to be used as follows:

 If mb_ref_frame_sel1 is equal to 0, MbRefFrame[row][col] is set equal to 1 (Ref0 is used as the reference
frame).

 Otherwise, if mb_ref_frame_sel2 is equal to 0, MbRefFrame[row][col] is set equal to 2 (Ref1 is used as
the reference frame).

 Otherwise, MbRefFrame[row][col] is set equal to 3 (Ref2 is used as the reference frame).

mv_mode specifies the macroblock motion vector mode according to Table 6:

Table 6 — Name association to mv_mode

mv_mode Name of mv_mode

5 MV_NEAREST (use "nearest" motion vector for entire MB)

6 MV_NEAR (use "next nearest”)

7 MV_ZERO (use zero motion vector)

8 MV_NEW (use an explicit offset)

9 MV_SPLIT (use multiple motion vectors)

mv_split_mode specifies the macroblock partitioning according to the following table:

Table 7 — Name association to mv_split_mode

mv_split_mode Name of mv_split_mode

0 MV_TOP_BOTTOM (two pieces { 0..7 } and { 8..15 })

1 MV_LEFT_RIGHT ({ 0, 1, 4, 5, 8, 9, 12 ,13 } and { 2, 3, 6, 7, 10, 11, 14, 15 })

2 MV_QUARTERS ({ 0, 1, 4, 5 }, { 2, 3, 6, 7 }, { 8, 9, 12, 13 }, { 10, 11, 14, 15 })

3 MV_16 (every sub-block gets its own vector { 0 }..{ 15 })

ISO/IEC FDIS 14496-31:2017(E)

28 © ISO/IEC 2017 – All rights reserved

The variable NumMvs is derived as follows:

 If mv_split_mode is MV_TOP_BOTTOM or MV_LEFT_RIGHT, NumMvs is set equal to 2.

 Otherwise, if mv_split_mode is MV_QUARTERS, NumMvs is set equal to 4.

 Otherwise (mv_split_mode is MV_16), NumMvs is set equal to 16.

sub_mv_mode specifies the sub-block motion vector mode for macroblocks coded using the MV_SPLIT motion
vector mode according to the following table:

Table 8 — Name association to sub_mv_mode

sub_mv_mode Name of sub_mv_mode

5 LEFT4X4 (use already-coded MV left)

6 ABOVE4X4 (use already-coded MV above)

7 ZERO4X4 (use zero MV)

8 NEW4X4 (explicit offset from "best")

intra_y_mode specifies the luma intra prediction mode according to the following table:

Table 9 — Name association to intra_y_mode

intra_y_mode Name of intra_y_mode

0 DC_PRED (predict DC using row above and column to the left)

1 V_PRED (predict rows using row above)

2 H_PRED (predict columns using column to the left)

3 TM_PRED (propagate second differences)

4 B_PRED (each Y sub-block is independently predicted)

intra_b_mode specifies the sub-block luma prediction mode for macroblocks coded using B_PRED mode
according to the following table:

Table 10 — Name association to intra_b_mode

intra_b_mode Name of intra_b_mode

0 B_DC_PRED (predict DC using row above and column to the left)

1 B_TM_PRED (propagate second differences, as in TM_PRED mode)

2 B_VE_PRED (predict rows using row above)

3 B_HE_PRED (predict columns using column to the left)

4 B_LD_PRED (left and down, 45 degree diagonal prediction)

5 B_RD_PRED (right and down, 45 degree diagonal prediction)

6 B_VR_PRED (vertical right diagonal prediction)

7 B_VL_PRED (vertical left diagonal prediction)

8 B_HD_PRED (horizontal down prediction)

9 B_HU_PRED (horizontal up prediction)

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 29

intra_uv_mode specifies the chroma intra prediction mode using the values 0..3 with the same interpretation
as in the semantics for intra_y_mode.

7.5.1.2 MV component semantics

mv_long specifies whether a long coding is used for the motion vector.

mv_bit specifies a single bit of a long coded motion vector component.

mv_short specifies a short coded motion vector component.

mv_sign specifies whether the motion vector component is negated.

The computed value for the motion vector component (c) will be a value between −1023 and 1023 and
represents an offset in quarter sample units.

7.5.2 Prediction residual block semantics

firstCoeff is a parameter that specifies whether the DC coefficient is skipped in this block.

coeff_token defines the value of the coefficient, the value range of the coefficient, or the end of block according
to the following table:

Table 11 — Name association to token

coeff_token Name of token

0 DCT_0 (value 0)

1 DCT_1 (value 1)

2 DCT_2 (value 2)

3 DCT_3 (value 3)

4 DCT_4 (value 4)

5 DCT_CAT1 (values 5 … 6)

6 DCT_CAT2 (values 7 … 10)

7 DCT_CAT3 (values 11 …18)

8 DCT_CAT4 (values 19 …34)

9 DCT_CAT5 (values 35 … 66)

10 DCT_CAT6 (values 67 … 2048)

11 DCT_EOB (end of block)

The variables catBase, catNum, and catProbs are derived as follows:

 If coeff_token is equal to DCT_CAT1, catBase is set equal to 5, catNum is set equal to 1, catProbs is set
equal to the array { 159 }.

 If coeff_token is equal to DCT_CAT2, catBase is set equal to 7, catNum is set equal to 2, catProbs is set
equal to the array { 165, 145 }.

 If coeff_token is equal to DCT_CAT3, catBase is set equal to 11, catNum is set equal to 3, catProbs is set
equal to the array { 173, 148, 140 }.

 If coeff_token is equal to DCT_CAT4, catBase is set equal to 19, catNum is set equal to 4, catProbs is set
equal to the array { 176, 155, 140, 135 }.

ISO/IEC FDIS 14496-31:2017(E)

30 © ISO/IEC 2017 – All rights reserved

 If coeff_token is equal to DCT_CAT5, catBase is set equal to 35, catNum is set equal to 5, catProbs is set
equal to the array { 180, 157, 141, 134, 130 }.

 If coeff_token is equal to DCT_CAT6, catBase is set equal to 67, catNum is set equal to 11, catProbs is set
equal to the array { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 }.

extra_bit specifies an increment to the value of the coefficient.

coef_sign indicates the sign of the coefficient.

8 Decoding process

8.1 General

Decoders shall produce output frames that are equal in value and have the same output order as those produced
by the decoding process specified herein.

Input to this process is a sequence of coded frames.

Output from this process is a sequence of decoded frames.

For each coded frame in turn the decoding process operates as follows:

a) The syntax elements in the compressed header are extracted as specified in clauses 6 and 7 and the header
update process as specified in clause 8.2 is invoked as soon as all the syntax elements in
compressed_header have been extracted.

b) The macroblock headers are extracted as specified in clauses 6 and 7 and the coding context update
process as specified in clause 8.3 is invoked for each macroblock as soon as all the syntax elements in
mb_header have been extracted with the inputs StartRow = row and StartCol = col.

c) The sub-block motion vector reconstruction process as specified in clause 8.4.6.2 is invoked each time
sub_mv_mode is decoded as soon as the associated MV component (if any) has been extracted.

d) The macroblock decoding process as specified in clause 8.4 is invoked for each macroblock as soon as all
the syntax elements in prediction_residual_data have been extracted with the inputs StartRow = row and
StartCol = col.

e) If loop_filter_level is not equal to 0 and version_number is less than or equal to 1, the loop filter process as
specified in clause 8.5 is invoked once all macroblocks have been decoded.

f) If show_frame is equal to 1, the output process as specified in clause 8.6 is invoked.

g) A reference frame update process as specified in clause 8.7 is invoked.

8.2 Header update process

This process is invoked as soon as all the syntax elements in the compressed header have been extracted.

Inputs to this process are the syntax elements in the uncompressed and compressed header.

Output from this process is an updated set of saved probabilities.

When refresh_entropy_probs is equal to 1, the probabilities used for decoding mode, motion vectors, and tokens
are saved for use in subsequent frames as follows:

for (i = 0; i < 4; i++)
SavedIntra16x16Prob[i] = intra_16x16_prob[i]

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 31

 for (i = 0; i < 3; i++)
SavedIntraChromaProb[i] = intra_chroma_prob[i]

 for (i = 0; i < 4; i++)
for (j = 0; j < 8; j++)

for (k = 0; k < 3; k++)
for (t = 0; t < 11; t++)

SavedCoeffProb[i][j][k][t] = coeff_prob[i][j][k][t]
for (i = 0; i < 2; i++)
 for (j = 0; j < 19; j++)
 SavedMvProb[i][j] = mv_prob[i][j]

NOTE The probabilities are reset on key frames and persist across subsequent P frames. The syntax of each frame
indicates whether to update the probabilities or to use the saved ones. When updated probabilities are used,
refresh_entropy_probs controls whether to also use the update for subsequent frames.

8.3 Coding context update process

The coding context update process is invoked for each macroblock as soon as all the syntax elements in
mb_header have been extracted.

The inputs to the process are the variables StartRow and StartCol specifying the macroblock location.

The outputs of the process are modifications to the context variables.

If KeyFrame is equal to 1, the intra mode contexts are updated as follows:

 If intra_y_mode is equal to DC_PRED, the following applies:

 for (i = 0; i < 4; i++) {

 LeftIntraMode[i] = B_DC_PRED

 AboveIntraMode[StartCol][i] = B_DC_PRED

 }

 Otherwise, if intra_y_mode is equal to V_PRED, the following applies:

 for (i = 0; i < 4; i++) {

 LeftIntraMode[i] = B_VE_PRED

 AboveIntraMode[StartCol][i] = B_VE_PRED

 }

 Otherwise, if intra_y_mode is equal to H_PRED, the following applies:

 for (i = 0; i < 4; i++) {

 LeftIntraMode[i] = B_HE_PRED

 AboveIntraMode[StartCol][i] = B_HE_PRED

 }

 Otherwise, if intra_y_mode is equal to TM_PRED, the following applies:

 for (i = 0; i < 4; i++) {

 LeftIntraMode[i] = B_TM_PRED

 AboveIntraMode[StartCol][i] = B_TM_PRED

 }

ISO/IEC FDIS 14496-31:2017(E)

32 © ISO/IEC 2017 – All rights reserved

 Otherwise, if intra_y_mode is equal to B_PRED, the following applies:

 for (i = 0; i < 4; i++) {

 LeftIntraMode[i] = intra_b_mode[i * 4 + 3]

 AboveIntraMode[StartCol][i] = intra_b_mode[12 + i]

 }

If is_inter_mb is equal to 1, the motion vector reconstruction process specified in clause 8.4.6 is invoked.

Depending on the value of is_inter_mb, the following applies:

 If is_inter_mb is equal to 0, the following applies:

MbSplit[StartRow][StartCol] = 0

 Otherwise, if mv_mode is equal to MV_SPLIT, the following applies:

MbSplit[StartRow][StartCol] = 1

MbMvs[StartRow][StartCol] = SubMvs[StartRow][StartCol][15]

 Otherwise, the following applies:

MbSplit[StartRow][StartCol] = 0

MbMvs[StartRow][StartCol] = Mv

8.4 Macroblock decoding process

8.4.1 General

The macroblock decoding process is invoked for each macroblock in raster order.

The inputs to this process are the variables StartRow and StartCol specifying the macroblock location.

The following ordered steps apply:

a) The prediction_residual decoding process as specified in clause 8.4.4 is invoked.

b) Depending on the value of is_inter_mb, the following applies:

1) If is_inter_mb is equal to 0, the intra prediction process as specified in clause 8.4.2 is invoked with
StartRow and StartCol as inputs.

2) Otherwise (is_inter_mb is equal to 1), the inter prediction process as specified in clause 8.4.3 is invoked
with StartRow and StartCol as inputs.

8.4.2 Intra prediction process

8.4.2.1 General

The intra prediction process is invoked for intra coded macroblocks in a P frame and for all macroblocks in a
key frame.

Inputs to this process are:

 the already reconstructed samples in the current frame CurrPic,

 the prediction residual values for the current macroblock in PredictionResidual,

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 33

 the variables StartRow and StartCol specifying the location of the macroblock.

Outputs of this process are the samples in the current frame CurrPic corresponding to the current macroblock.

The intra prediction process is specified as follows:

 The block intra prediction process specified in clause 8.4.2.2 is invoked with the variable colourPlane set
equal to 1, predMode set equal to intra_uv_mode, x set equal to StartCol * 8, y set equal to StartRow * 8,
and the variable log2Size set equal to 3.

 The block intra prediction process specified in clause 8.4.2.2 is invoked with the variable colourPlane set
equal to 2, predMode set equal to intra_uv_mode, x set equal to col * 8, y set equal to StartRow * 8, and
the variable log2Size set equal to 3.

 Depending on the value of intra_y_mode, the following applies:

 If intra_y_mode is equal to B_PRED, the following applies:

for (y = 0; y < 4; y++)

for (x = 0; x < 4; x++)

The sub-block intra prediction process specified in clause 8.4.2.3 is invoked with
variables x, y, StartRow, and StartCol as inputs.

 Otherwise, the block intra prediction process specified in clause 8.4.2.2 is invoked with the variable
colourPlane set equal to 0, predMode set equal to intra_y_mode, x set equal to StartCol * 16, y set
equal to StartRow * 16, and the variable log2Size set equal to 4.

8.4.2.2 Block intra prediction process

The inputs to this process are:

 a variable colourPlane specifying which plane is being predicted,

 a variable predMode specifying the direction of intra prediction,

 variables x and y specifying the location of the top left sample of the current macroblock in the
CurrPic[colourPlane] array,

 a variable log2Size specifying the size of the intra block.

Outputs of this process are the samples in the current frame CurrPic corresponding to the specified plane of the
current macroblock.

The variable BlockSize is specified as 1 << log2Size.

The array aboveRow is specified depending on the variable y as:

 If y is equal to 0, aboveRow[i] is set equal to 127 with i = 0..BlockSize−1.

 Otherwise, aboveRow[i] is set equal to CurrPic[colourPlane][x + i][y − 1] with i = 0..BlockSize−1.

The array leftCol is specified depending on the variable x as:

 If x is equal to 0, leftCol [i] is set equal to 129 with i = 0..BlockSize−1.

 Otherwise, leftCol [i] is set equal to CurrPic[colourPlane][x − 1][y + i] with i = 0..BlockSize−1.

ISO/IEC FDIS 14496-31:2017(E)

34 © ISO/IEC 2017 – All rights reserved

The variable aboveLeftPixel is specified depending on x and y as:

 If y is equal to 0, aboveLeftPixel is set equal to 127.

 Otherwise, if x is equal to 0, aboveLeftPixel is set equal to 129.

 Otherwise, aboveLeftPixel is set equal to CurrPic[colourPlane][x − 1][y − 1].

A prediction array is constructed as follows:

 If predMode is equal to V_PRED, prediction[x2][y2] is set equal to aboveRow[x2] with x2 =
0..BlockSize−1 and y2 = 0..BlockSize−1 (each row of the block is filled with a copy of aboveRow).

 Otherwise if predMode is equal to H_PRED, prediction[x2][y2] is set equal to leftCol[y2] with x2 =
0..BlockSize−1 and y2 = 0..BlockSize−1 (each column of the block is filled with a copy of leftCol).

 Otherwise if predMode is equal to DC_PRED and x is non-zero and y is non-zero, prediction[x2][y2] is
set equal to avg with x2 = 0.. BlockSize −1 and y2 = 0.. BlockSize −1. The variable avg (the average of the
samples in union of aboveRow and leftCol) is specified as follows:

sum = 0

for (i = 0; i < BlockSize; i++) {

sum += leftCol[i]

sum += aboveRow[i]

}

avg = (sum + BlockSize) >> (log2Size + 1)

 Otherwise if predMode is equal to DC_PRED and x is non-zero and y is zero, prediction[x2][y2] is set
equal to leftAvg with x2 = 0..BlockSize−1 and y2 = 0..BlockSize−1. The variable leftAvg is specified as
follows:

 sum = 0

 for (i = 0; i < BlockSize; i++)

 sum += leftCol[i]

 leftAvg = (sum + (1 << (log2Size − 1))) >> log2Size

 Otherwise if predMode is equal to DC_PRED and x is zero and y is non-zero, prediction[x2][y2] is set
equal to aboveAvg with x2 = 0.. BlockSize −1 and y2 = 0.. BlockSize −1. The variable aboveAvg is specified
as follows:

 sum = 0

 for (i = 0; i < BlockSize; i++)

 sum += aboveRow[i]

 aboveAvg = (sum + (1 << (log2Size − 1))) >> log2Size

 Otherwise if predMode is DC_PRED, prediction[x2][y2] is set equal to 128 with x2 = 0..BlockSize−1 and
y2 = 0..BlockSize−1.

 Otherwise (predMode is equal to TM_PRED), prediction[x2][y2] is set equal to Clip1(leftCol[y2] +
aboveRow[x2] − aboveLeftPixel) with x2 = 0..BlockSize−1 and y2 = 0..BlockSize−1.

 Once the prediction array has been constructed, the macroblock is reconstructed by setting
CurrPic[colourPlane][x + x2][y + y2] equal to Clip1(prediction[x2][y2] +
PredictionResidual[colourPlane][x2][y2]) with x2 = 0..BlockSize−1 and y2 = 0..BlockSize−1.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 35

If clamping_type is equal to 1, prediction[x2][y2] + PredictionResidual[colourPlane][x2][y2] shall be in the
range 0 to 255 with x2 = 0..BlockSize−1 and y2 = 0..BlockSize−1.

8.4.2.3 Sub-block intra prediction process

The inputs to this process are:

 variables StartRow and StartCol specifying the current macroblock,

 variables x and y specifying which sub-block in that macroblock is being predicted.

The output is to set the values in CurrPic[0] corresponding to the current sub-block.

The array leftCol is specified depending on the variable x and StartCol as:

 If x is equal to 0 and StartCol is equal to 0, leftCol[i] is set equal to 129 with i = 0..3.

 Otherwise, leftCol[i] is set equal to CurrPic[0][StartCol * 16 + x * 4 − 1][StartRow * 16 + y * 4 + i] with i
= 0..3.

The variable aboveLeftPixel is specified depending on x, y, StartRow, StartCol as:

 If y is equal to 0 and StartRow is equal to 0, aboveLeftPixel is set equal to 127.

 Otherwise if x is equal to 0 and StartCol is equal to 0, aboveLeftPixel is set equal to 129.

 Otherwise, aboveLeftPixel is set equal to CurrPic[0][StartCol * 16 + x * 4 − 1][StartRow * 16 + y * 4 − 1].

The first 4 entries of array aboveRow are specified as:

 If y is equal to 0 and StartRow is equal to 0, aboveRow[i] is set equal to 127 with i = 0..3.

 Otherwise, aboveRow[i] is set equal to CurrPic[0][StartCol * 16 + x * 4 + i][StartRow * 16 + y * 4 − 1]
with i = 0..3.

The second 4 entries of array aboveRow are specified as:

 If y is equal to 0 and StartRow is equal to 0, aboveRow[i] is set equal to 127 with i = 4..7.

 Otherwise if x is equal to 3 and StartRow is equal to 0, aboveRow[i] is set equal to 127 with i = 4..7.

 Otherwise, if x is equal to 3 and StartCol is less than MbCols − 1, aboveRow[i] is set equal to
CurrPic[0][(StartCol + 1) * 16 + i − 4][StartRow * 16 − 1] with i = 4..7.

 Otherwise, if x is equal to 3 (and StartCol is equal to MbCols − 1), aboveRow[i] is set equal to
CurrPic[0][StartCol * 16 + 15][StartRow * 16 − 1] with i = 4..7.

 Otherwise, aboveRow[i] is set equal to CurrPic[0][StartCol * 16 + x * 4 + i][StartRow * 16 + y * 4 − 1]
with i = 4..7.

The entry aboveRow[−1] is set equal to aboveLeftPixel.

The variable IntraPredBlock is set equal to 4 * y + x.

The variable predMode is set equal to intra_b_mode[IntraPredBlock].

A prediction array is constructed as follows:

ISO/IEC FDIS 14496-31:2017(E)

36 © ISO/IEC 2017 – All rights reserved

 If predMode is B_VE_PRED, the following applies:

 for (y2 = 0; y2 < 4; y2++)

 for (x2 = 0; x2 < 4; x2++)

prediction[x2][y2] = (aboveRow[x2 − 1] + 2 * aboveRow[x2]

+ aboveRow[x2 + 1] + 2) >> 2

 Otherwise if predMode is B_HE_PRED, the following applies:

 for (y2 = 0; y2 < 4; y2++) {

 for (x2 = 0; x2 < 4; x2++) {

if (x2 < 3)

prediction[x2][y2] = (leftCol[y2 − 1] + 2 * leftCol[y2]

+ leftCol[y2 + 1] + 2) >> 2

 else

prediction[x2][y2] = (leftCol[y2 − 1] + 3 * leftCol[y2] + 2) >> 2

 }

 }

 Otherwise if predMode is B_DC_PRED, prediction[x2][y2] is set equal to avg with x2 = 0..3 and y2 = 0..3
where avg is specified as:

 sum = 0

 for (i = 0; i < 4; i++) {

 sum += leftCol[i]

 sum += aboveRow[i]

 }

 avg = (sum + 4) >> 3

 Otherwise if predMode is B_TM_PRED, the following applies:

 for (y2 = 0; y2 < 4; y2++) {

 for (x2 = 0; x2 < 4; x2++)

 prediction[x2][y2] = Clip1(leftCol[y2] + aboveRow[x2] − aboveLeftPixel)

 }

 Otherwise if predMode is B_LD_PRED, the following applies:

 for (y2 = 0; y2 < 4; y2++) {

 for (x2 = 0; x2 < 4; x2++) {

 if (x2 + y2 < 6)

 prediction[x2][y2] = (aboveRow[x2 + y2] + 2 * aboveRow[x2 + y2 + 1]

+ aboveRow[x2 + y2 + 2] + 2) >> 2

 else

 prediction[x2][y2] = (aboveRow[x2 + y2] + 3 * aboveRow[x2 + y2 + 1] + 2) >> 2

 }

 }

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 37

 Otherwise if predMode is B_RD_PRED, the following applies:

 for (y2 = 0; y2 < 4; y2++) {

 for (x2 = 0; x2 < 4; x2++) {

 if (x2 − y2 < 0)

 prediction[x2][y2] = (leftCol[y2 − x2] + 2 * leftCol [y2 − x2 − 1]

+ leftCol [y2 − x2 − 2] + 2) >> 2

 else if (x2 − y2 == 0)

 prediction[x2][y2] = (leftCol[0] + 2 * aboveLeftPixel

+ aboveRow[0] + 2) >> 2

 else

 prediction[x2][y2] = (aboveRow[x2 − y2 − 2] + 2 * aboveRow[x2 − y2 − 1]

+ aboveRow[x2 − y2] + 2) >> 2

 }

 }

 Otherwise if predMode is B_VR_PRED, the following applies:

 prediction[0][3] = (leftCol[2] + 2 * leftCol[1] + leftCol[0] + 2) >> 2

 prediction[0][2] = (leftCol[1] + 2 * leftCol[0] + aboveLeftPixel + 2) >> 2

 prediction[1][3] = prediction[0][1] = (leftCol[0] + 2 * aboveLeftPixel + aboveRow[0] + 2) >> 2

 prediction[1][2] = prediction[0][0] = (aboveLeftPixel + aboveRow[0] + 1) >> 1

 prediction[2][3] = prediction[1][1] = (aboveLeftPixel + 2 * aboveRow[0]

+ aboveRow[1] + 2) >> 2

 prediction[2][2] = prediction[1][0] = (aboveRow[0] + aboveRow[1] + 1) >> 1

prediction[3][3] = prediction[2][1] = (aboveRow[0] + 2 * aboveRow[1]

+ aboveRow[2] + 2) >> 2

 prediction[3][2] = prediction[2][0] = (aboveRow[1] + aboveRow[2] + 1) >> 1

 prediction[3][1] = (aboveRow[1] + 2 * aboveRow[2] + aboveRow[3] + 2) >> 2

 prediction[3][0] = (aboveRow[2] + aboveRow[3] + 1) >> 1

 Otherwise if predMode is B_VL_PRED, the following applies:

 prediction[0][0] = (aboveRow[0] + aboveRow[1] + 1) >> 1

 prediction[0][1] = (aboveRow[0] + 2 * aboveRow[1] + aboveRow[2] + 2) >> 2

 prediction[0][2] = prediction[1][0] = (aboveRow[1] + aboveRow[2] + 1) >> 1

 prediction[1][1] = prediction[0][3] = (aboveRow[1] + 2 * aboveRow[2]

+ aboveRow[3] + 2) >> 2

 prediction[1][2] = prediction[2][0] = (aboveRow[2] + aboveRow[3] + 1) >> 1

 prediction[1][3] = prediction[2][1] = (aboveRow[2] + 2 * aboveRow[3]

+ aboveRow[4] + 2) >> 2

 prediction[2][2] = prediction[3][0] = (aboveRow[3] + aboveRow[4] + 1) >> 1

 prediction[2][3] = prediction[3][1] = (aboveRow[3] + 2 * aboveRow[4]

+ aboveRow[5] + 2) >> 2

 prediction[3][2] = (aboveRow[4] + 2 * aboveRow[5] + aboveRow[6] + 2) >> 2

 prediction[3][3] = (aboveRow[5] + 2 * aboveRow[6] + aboveRow[7] + 2) >> 2

 Otherwise if predMode is B_HD_PRED, the following applies:

ISO/IEC FDIS 14496-31:2017(E)

38 © ISO/IEC 2017 – All rights reserved

 prediction[0][3] = (leftCol[3] + leftCol[2] + 1) >> 1

 prediction[1][3] = (leftCol[3] + 2 * leftCol[2] + leftCol[1] + 2) >> 2

 prediction[0][2] = prediction[2][3] = (leftCol[2] + leftCol[1] + 1) >> 1

 prediction[1][2] = prediction[3][3] = (leftCol [2] + 2 * leftCol [1] + leftCol[0] + 2) >> 2

 prediction[2][2] = prediction[0][1] = (leftCol[1] + leftCol[0] + 1) >> 1

 prediction[3][2] = prediction[1][1] = (leftCol [1] + 2 * leftCol [0] + aboveLeftPixel + 2) >> 2

 prediction[2][1] = prediction[0][0] = (leftCol[0] + aboveLeftPixel + 1) >> 1

 prediction[3][1] = prediction[1][0] = (leftCol [0] + 2 * aboveLeftPixel + aboveRow [0] + 2) >> 2

 prediction[2][0] = (aboveLeftPixel + 2 * aboveRow[0] + aboveRow[1] + 2) >> 2

 prediction[3][0] = (aboveRow[0] + 2 * aboveRow[1] + aboveRow[2] + 2) >> 2

 Otherwise (predMode is B_HU_PRED), the following applies:

 prediction[0][0] = (leftCol[0] + leftCol[1] + 1) >> 1

 prediction[1][0] = (leftCol[0] + 2 * leftCol[1] + leftCol[2] + 2) >> 2

 prediction[2][0] = prediction[0][1] = (leftCol[1] + leftCol[2] + 1) >> 1

 prediction[3][0] = prediction[1][1] = (leftCol [1] + 2 * leftCol [2] + leftCol[3] + 2) >> 2

 prediction[2][1] = prediction[0][2] = (leftCol[2] + leftCol[3] + 1) >> 1

 prediction[3][1] = prediction[1][2] = (leftCol [2] + 3 * leftCol [3] + 2) >> 2

prediction[2][2] = prediction[3][2] = prediction[0][3] = prediction[1][3] = prediction[2][3] =
prediction[3][3] = leftCol [3]

NOTE 1 The first four intra_b_modes are similar to their corresponding full block modes only acting on low-pass filtered
previous samples.

NOTE 2 The remaining six "diagonal" modes subdivide the prediction buffer into diagonal lines. All the samples on each
line are assigned the same value; this value is (a smoothed or synthetic version of) an already-constructed predictor value
lying on the same line. The first two use lines at +/− 45 degrees from horizontal (or, equivalently, vertical), that is, lines
whose slopes are +/− 1. The remaining 4 diagonal modes use lines whose slopes are +/− 2 and +/− 0.5, which means there
is often a need to "synthesize" predictor samples midway between two actual predictors by taking their average. All these
“diagonal” modes are unique to sub-block prediction and have no full-block analogs.

Once the prediction array has been constructed, the sub-block is reconstructed by setting CurrPic[0][col * 16
+ x * 4 + x2][row * 16 + y * 4 + y2] equal to Clip1(prediction[x2][y2] + PredictionResidual[0][x * 4 + x2][y
* 4 + y2]) with x2 = 0..3 and y2 = 0..3.

If clamping_type is equal to 1, prediction[x2][y2] + PredictionResidual[colourPlane][x * 4 + x2][y * 4 + y2]
shall be in the range 0 to 255 with x2 = 0..3 and y2 = 0..3.

8.4.3 Inter prediction process

8.4.3.1 General

Inputs to this process are:

 the previous reference frames in Ref0, Ref1, and Ref2,

 the variables StartRow and StartCol specifying the current macroblock.

Outputs from this process are the samples in the current frame CurrPic corresponding to the current macroblock.

The sub-block inter prediction process specified in 8.4.3.3 is invoked with colourPlane set equal to 0, mv set
equal to SubMvs[row][col][y * 4 + x], and StartRow, StartCol, x, y as inputs with x = 0..3, y = 0..3.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 39

The chroma prediction process specified in 8.4.3.2 is invoked with StartRow, StartCol, x, y as inputs with x =
0..1, y = 0..1.

8.4.3.2 Chroma prediction process

Inputs to this process are:

 the variables x and y specifying which chroma sub-block is being decoded,

 the variables StartRow and StartCol specifying the current macroblock.

The output of this process is to predict the value in the chroma sub-blocks based on motion compensated
filtering.

The chroma motion vector is computed in eighth-sample units by the following:

 for (comp = 0; comp < 2; comp++) {

 s = 0

for (y2 = 0; y2 < 2; y2++)

 for (x2 = 0; x2 < 2; x2++)

 s += 2 * SubMvs[StartRow][StartCol][x * 2 + x2 + 4 * (y * 2 + y2)][comp]

 chromaMv[comp] = (s >= 0) ? (s + 4) >> 3 : −((−s + 4) >> 3)

 if (version_number == 3)

 chromaMv[comp] &= ~7

 }
NOTE – The shift divides by 8 (not 4) because chroma samples have twice the effective width and height of luma samples.
The shifting of s is slightly cumbersome to make clear the behaviour for negative values.

The sub-block inter prediction process specified in 8.4.3.3 is invoked with mv set equal to chromaMv,
colourPlane = 1..2, and x, y, StartRow, StartCol as inputs.

8.4.3.3 Sub-block inter prediction process

The inputs to this process are:

 a variable colourPlane,

 a motion vector mv (in quarter luma sample units if colourPlane is equal to 0, otherwise in eighth luma
sample units),

 variables x and y giving the sub-block location,

 variables StartRow and StartCol giving the macroblock location.

Outputs from this process are the samples in the current frame CurrPic[colourPlane] corresponding to the
current sub-block.

The motion vector and coordinates are adjusted as follows:

 If colourPlane is equal to 0, the following applies:

 mv[0] = mv[0] * 2

 mv[1] = mv[1] * 2

xBase = StartCol * 16 + x * 4

 yBase = StartRow * 16 + y * 4

lastX = MbCols * 16 − 1

ISO/IEC FDIS 14496-31:2017(E)

40 © ISO/IEC 2017 – All rights reserved

lastY = MbRows * 16 − 1

 Otherwise (colourPlane is not equal to 0), the following applies:

 xBase = StartCol * 8 + x * 4

 yBase = StartRow * 8 + y * 4

lastX = MbCols * 8 − 1

lastY = MbRows * 8 − 1

The variable ref is set to the reference frame as follows:

 If MbRefFrame[StartRow][StartCol] is equal to 1, ref is set to Ref0.

 Otherwise, if MbRefFrame[StartRow][StartCol] is equal to 2, ref is set to Ref1.

 Otherwise (MbRefFrame[StartRow][StartCol] is equal to 3), ref is set to Ref2.

The sub-sample interpolation is effected via two one-dimensional convolutions. First, a horizontal filter is used
to build up a temporary array, and then this array is vertically filtered to obtain the final prediction. The fractional
parts of the motion vectors determine the filtering process. If the fractional part is zero, then the filtering is
equivalent to a straight sample copy.

The filtering is applied as follows:

 The array horizFilter is set as follows:

 If version_number is equal to 0, horizFilter is set equal to CubicFilters[mv[1] & 7].

 Otherwise, if version_number is less than 3, horizFilter is set equal to BilinearFilters[mv[1] & 7].

 Otherwise (version_number is equal to 3), horizFilter is set equal to BilinearFilters[0].

 The array vertFilter is set as follows:

 If version_number is equal to 0, vertFilter is set equal to CubicFilters[mv[0] & 7].

 Otherwise, if version_number is less than 3, vertFilter is set equal to BilinearFilters[mv[0] & 7].

 Otherwise (version_number is equal to 3), vertFilter is set equal to BilinearFilters[0].

 The array intermediate is specified as follows:

 for (y2 = −2; y2 < 7; y2++) {

 for (x2 = 0; x2 < 4; x2++) {

 s = 64

 for (t = 0; t < 6; t++)

 s += horizFilter[t] * ref[colourPlane][Clip3(0, lastX, xBase + x2 + t − 2 + (mv[1] >> 3))]

[Clip3(0, lastY, yBase + y2 + (mv[0] >> 3))]

 intermediate[x2][y2] = Clip1(s >> 7)

 }

 }

 The array predicted is specified as follows:

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 41

 for (y2 = 0; y2 < 4; y2++) {

 for (x2 = 0; x2 < 4; x2++) {

 s = 64

 for (t = 0; t < 6; t++)

 s += vertFilter[t] * intermediate[x2][y2 + t − 2]

 prediction[x2][y2] = Clip1(s >> 7)

 }

 }

Once the prediction array has been constructed, the sub-block is reconstructed by setting
CurrPic[colourPlane][xBase + x2][yBase + y2] equal to Clip1(prediction[x2][y2] +
PredictionResidual[colourPlane][x * 4 + x2][y * 4 + y2]) with x2 = 0..3 and y2 = 0..3.

If clamping_type is equal to 1, prediction[x2][y2] + PredictionResidual[colourPlane][x * 4 + x2][y * 4 + y2]
shall be in the range 0 to 255 with x2 = 0..3 and y2 = 0..3.

Table 12 — Interpolation coefficients

BilinearFilters[8][6] = {

 { 0, 0, 128, 0, 0, 0 },

 { 0, 0, 112, 16, 0, 0 },

 { 0, 0, 96, 32, 0, 0 },

 { 0, 0, 80, 48, 0, 0 },

 { 0, 0, 64, 64, 0, 0 },

 { 0, 0, 48, 80, 0, 0 },

 { 0, 0, 32, 96, 0, 0 },

 { 0, 0, 16, 112, 0, 0 }

}

CubicFilters[8][6] = { /* indexed by displacement */

 { 0, 0, 128, 0, 0, 0 }, /* degenerate whole-sample */

 { 0, −6, 123, 12, −1, 0 }, /* 1÷8 position */

 { 2, −11, 108, 36, −8, 1 }, /* 1÷4 position */

 { 0, −9, 93, 50, −6, 0 }, /* 3÷8 position */

 { 3, −16, 77, 77, −16, 3 }, /* 1÷2 position (is symmetric) */

 { 0, −6, 50, 93, −9, 0 }, /* 5÷8 position (is reverse of 3÷8 position) */

 { 1, −8, 36, 108, −11, 2 }, /* 3÷4 position (is reverse of 1÷4 position) */

 { 0, −1, 12, 123, −6, 0 } /* 7÷8 position (is reverse of 1÷8 position) */

}

8.4.4 Prediction residual decoding process

8.4.4.1 General

Inputs to this process are the syntax elements from the prediction residual data for this macroblock.

Outputs of this process are the prediction residual sample values in the array
PredictionResidual[colourPlane][x][y].

The prediction residual is specified as follows:

 If mb_skip_coeff is equal to 1, the prediction residual is cleared as follows:

ISO/IEC FDIS 14496-31:2017(E)

42 © ISO/IEC 2017 – All rights reserved

 for (y = 0; y < 16; y++)

for (x = 0; x < 16; x++)

 PredictionResidual[0][x][y] = 0

 for (colourPlane = 1; colourPlane < 3; colourPlane++)

 for (y = 0; y < 8; y++)

for (x = 0; x < 8; x++)

 PredictionResidual[colourPlane][x][y] = 0

 Otherwise, the following ordered steps apply:

 1. The dequantization process as specified in clause 8.4.4.2 is invoked.

 2. If HasY2 is equal to 1, the Walsh-Hadamard inversion process as specified in clause 8.4.4.3 is invoked.

 3. The inverse transform process as specified in clause 8.4.4.4 is invoked.

8.4.4.2 Dequantization

In this process, the transform coefficients are dequantized.

Input to this process is the syntax element segment_id and the variable HasY2.

The variable q is derived as follows:

 If segmentation_enabled is equal to 0, q is set equal to y_ac_qi.

 Otherwise, if segment_feature_mode is equal to 1, q is set equal to Quantizer[segment_id].

 Otherwise, q is set equal to y_ac_qi + Quantizer[segment_id].

The function dc_q(b) is specified as the entry at index Clip3(0, 127, b) in table dc_qlookup:

Table 13 — Dequantizaton factors for DC coefficients

dc_qlookup[128] = {

 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15,

 16, 17, 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 23,

 24, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 46,

 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

 73, 74, 75, 76, 76, 77, 78, 79, 80, 81, 82, 83, 84,

 85, 86, 87, 88, 89, 91, 93, 95, 96, 98, 100, 101, 102,

 104, 106, 108, 110, 112, 114, 116, 118, 122, 124, 126, 128, 130,

 132, 134, 136, 138, 140, 143, 145, 148, 151, 154, 157,

}

The function ac_q(b) is specified as the entry at index Clip3(0, 127, b) in table ac_qlookup:

Table 14 — Dequantization values for AC coefficients

ac_qlookup[128] = {

 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 43

 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

 56, 57, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78,

 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104,

 106, 108, 110, 112, 114, 116, 119, 122, 125, 128, 131, 134, 137,

 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 177,

 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229,

 234, 239, 245, 249, 254, 259, 264, 269, 274, 279, 284,

}

If HasY2 is equal to 1, the Walsh-Hadamard inputs are derived as follows:

 dqf = Max(8, (ac_q(q + y2_ac_delta_q) * 155) / 100)

 for (y = 0; y < 4; y++)

 for (x = 0; x < 4; x++)

 Walsh[x][y] = dqf * TransCoeff[24][x][y]

Walsh[0][0] = dc_q(q + y2_dc_delta_q) * 2 * TransCoeff[24][0][0]

The luma blocks are dequantized as follows:

 for (block = 0; block < 16; block++) {

 for (y = 0; y < 4; y++)

 for (x = 0; x < 4; x++)

 Dequant[block][x][y] = ac_q(y_ac_qi) * TransCoeff[block][x][y]

Dequant[block][0][0] = dc_q(q + y_dc_delta_q) * TransCoeff[block][0][0]

}

The chroma blocks are dequantized as follows:

dqf = ac_q(q + uv_ac_delta_q)

for (block = 16; block < 24; block++) {

 for (y = 0; y < 4; y++)

 for (x = 0; x < 4; x++)

 Dequant[block][x][y] = dqf * TransCoeff[block][x][y]

 Dequant[block][0][0] = Min(132, dc_q(q + uv_dc_delta_q)) * TransCoeff[block][0][0]

}

A bitstream shall not result in a value being stored in Walsh or Dequant that is less than −32768, or greater than
32767.

8.4.4.3 Implementation of the WHT inversion

This process updates the luma DC values in Dequant[block][0][0] for block = 0..15.

The input to this process are the values in Walsh[x][y] for x = 0..3, y = 0..3.

The array input is specified as follows:

 for (y = 0; y < 4; y++)

ISO/IEC FDIS 14496-31:2017(E)

44 © ISO/IEC 2017 – All rights reserved

 for (x = 0; x < 4; x++)

 input[x + y * 4] = Walsh[x][y]

The inverse transform used to map the WHT coefficients to the spatial domain is specified as follows:

Table 15 — Inverse 4x4 Walsh Hadamard transform

vcb_short_inv_walsh4x4(input[16], output[16]) {

 for (i = 0; i < 4; i++) {

 a1 = input[i + 0] + input[i + 12]

 b1 = input[i + 4] + input[i + 8]

 c1 = input[i + 4] − input[i + 8]

 d1 = input[i + 0] − input[i + 12]

 output[i + 0] = a1 + b1

 output[i + 4] = c1 + d1

 output[i + 8] = a1 − b1

 output[i + 12] = d1 − c1

 }

 idx = 0

 for (i = 0; i < 4; i++) {

 a1 = output[idx + 0] + output[idx + 3]

 b1 = output[idx + 1] + output[idx + 2]

 c1 = output[idx + 1] − output[idx + 2]

 d1 = output[idx + 0] − output[idx + 3]

 a2 = a1 + b1

 b2 = c1 + d1

 c2 = a1 − b1

 d2 = d1 − c1

 output[idx + 0] = (a2 + 3) >> 3

 output[idx + 1] = (b2 + 3) >> 3

 output[idx + 2] = (c2 + 3) >> 3

 output[idx + 3] = (d2 + 3) >> 3

 idx += 4

 }

}

A bitstream shall not result in values being stored in the input or output arrays that are less than −32768, or
greater than 32767.

The DC dequantized values are updated as follows:

 for (y = 0; y < 4; y++)

 for (x = 0; x < 4; x++)

 Dequant[x + y * 4][0][0] = output[x + y * 4]

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 45

8.4.4.4 DCT macroblock inversion process

8.4.4.4.1 General

This process generates the values in PredictionResidual.

The inputs to this process are the dequantized coefficients in Dequant.

The following applies for bx = 0..3 and by = 0..3:

 An array input is specified as follows:

 for (y = 0; y < 4; y++)

 for (x = 0; x < 4; x++)

 input[x + y * 4] = Dequant[bx + by * 4][x][y]

 The DCT block inversion process specified in clause 8.4.4.4.2 is invoked.

 The prediction residual values are updated as follows:

 for (y = 0; y < 4; y++)

 for (x = 0; x < 4; x++)

 PredictionResidual[0][bx * 4 + x][by * 4 + y] = output[x + y * 4]

The following applies for colourPlane = 1..2, bx = 0..1, and by = 0..1:

 An array input is specified as follows:

 for (y = 0; y < 4; y++)

 for (x = 0; x < 4; x++)

 input[x + y * 4] = Dequant[16 + (colourPlane − 1) * 4 + bx + by * 2][x][y]

 The DCT block inversion process specified in clause 8.4.4.4.2 is invoked.

 The prediction residual values are updated as follows:

 for (y = 0; y < 4; y++)

 for (x = 0; x < 4; x++)

 PredictionResidual[colourPlane][bx * 4 + x][by * 4 + y] = output[x + y * 4]

8.4.4.4.2 DCT block inversion process

The input to this process is an array input with 16 elements.

The output from this process is an array output with 16 elements.

The DCT inversions are computed using a 2-D inverse transform, which can be implemented as two passes of
a 1-D inverse transform.

The inverse 4x4 DCT is specified as follows:

Table 16 — Inverse 4x4 discrete cosine tranform

idct4x4(input[16], output[16]) {

ISO/IEC FDIS 14496-31:2017(E)

46 © ISO/IEC 2017 – All rights reserved

 cospi8sqrt2minus1 = 20091

 sinpi8sqrt2 = 35468

 idx = 0

 for (i = 0; i < 4; i++) {

 a1 = input[idx + 0] + input[idx + 8]

 b1 = input[idx + 0] − input[idx + 8]

 temp1 = (input[idx + 4] * sinpi8sqrt2) >> 16

 temp2 = input[idx + 12] + ((input[idx + 12] * cospi8sqrt2minus1) >> 16)

 c1 = temp1 − temp2

 temp1 = input[idx + 4] + ((input[idx + 4] * cospi8sqrt2minus1) >> 16)

 temp2 = (input[idx + 12] * sinpi8sqrt2) >> 16

 d1 = temp1 + temp2

 output[idx + 0] = a1 + d1

 output[idx + 12] = a1 − d1

 output[idx + 4] = b1 + c1

 output[idx + 8] = b1 − c1

 idx++

 }

 idx = 0

 for (i = 0; i < 4; i++) {

 a1 = output[idx + 0] + output[idx + 2]

 b1 = output[idx + 0] − output[idx + 2]

 temp1 = (output[idx + 1] * sinpi8sqrt2) >> 16

 temp2 = output[idx + 3] + ((output[idx + 3] * cospi8sqrt2minus1) >> 16)

 c1 = temp1 − temp2

 temp1 = output[idx + 1] + ((output[idx + 1] * cospi8sqrt2minus1) >> 16)

 temp2 = (output[idx + 3] * sinpi8sqrt2) >> 16

 d1 = temp1 + temp2

 output[idx + 0] = (a1 + d1 + 4) >> 3

 output[idx + 3] = (a1 − d1 + 4) >> 3

 output[idx + 1] = (b1 + c1 + 4) >> 3

 output[idx + 2] = (b1 − c1 + 4) >> 3

 idx += 4

 }

}

A bitstream shall not result in values being stored in the input or output arrays that are less than −32768, or
greater than 32767.

8.4.5 Motion vector prediction process

8.4.5.1 General

This process is invoked when decoding mv_mode for a macroblock.

Inputs to this process are:

 the variables StartRow and StartCol specifying the location of the macroblock,

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 47

 previously decoded motion vectors.

The outputs are an array cnt and a list of motion vectors NearMvs.

The process is specified as:

 numMvs = 0

for (i = 0; i < 4; i++) {

cnt[i] = 0

NearMvs[i] = 0

 }

 if (MbRefFrame[StartRow − 1][StartCol] != 0) {

 if (MbMvs[StartRow − 1][StartCol] != 0) {

 numMvs++

 NearMvs[numMvs] = Bias(MbMvs[StartRow − 1][StartCol], MbRefFrame[StartRow −
1][StartCol])

 }

 cnt[numMvs] += 2

 }

 if (MbRefFrame[StartRow][StartCol − 1] != 0) {

 thisMv = Bias(MbMvs[StartRow][StartCol − 1], MbRefFrame[StartRow][StartCol − 1])

 if (thisMv != 0) {

if (thisMv != NearMvs[numMvs]) {

 numMvs++

 NearMvs[numMvs] = thisMv

 }

 cnt[numMvs] += 2

 } else {

 cnt[0] += 2

 }

 }

if (MbRefFrame[StartRow − 1][StartCol − 1] != 0) {

 thisMv = Bias(MbMvs[StartRow − 1][StartCol − 1], MbRefFrame[StartRow − 1][StartCol − 1])

 if (thisMv != 0) {

if (thisMv != NearMvs[numMvs]) {

 numMvs++

 NearMvs[numMvs] = thisMv

 }

 cnt[numMvs] += 1

 } else

 cnt[0] += 1

 }

 if (cnt[3] && NearMvs[3] == NearMvs[1])

 cnt[1] += 1

 cnt[3] = 2 * MbSplit[StartRow − 1][StartCol] + 2 * MbSplit[StartRow][StartCol − 1] + MbSplit[StartRow
− 1][StartCol − 1]

ISO/IEC FDIS 14496-31:2017(E)

48 © ISO/IEC 2017 – All rights reserved

If cnt[2] is greater than cnt[1], then the contents of the array NearMvs at positions 1 and 2 are swapped, and
the contents of the array cnt at positions 1 and 2 are swapped.

If cnt[1] is greater than or equal to cnt[0], then NearMvs[0] is set equal to NearMvs[1].

NOTE The process of decoding the motion vectors generates a sorted list of distinct motion vectors adjacent to the
search site. The label best_mv is used to refer to the vector (NearMvs[0]) with the highest score. The label mv_nearest is
used to refer to the non-zero vector (NearMvs[1]) with the highest score. The label mv_near is used to refer to the non-
zero vector (NearMvs[2]) with the next highest score.

The motion vectors in NearMvs are clamped as follows:

 for (i = 0; i < 3; i++) {

 NearMvs[i][1] = Clip3(−((StartCol + 1) << 6), (MbCols − col) << 6, NearMvs[i][1])

 NearMvs[i][0] = Clip3(−((StartRow + 1) << 6), (MbRows − row) << 6, NearMvs[i][0])

 }

The function Bias(neighborMV, neighborRef) returns a modified motion vector outMV as follows:

 outMv = neighborMV

 if (ref_frame_sign_bias[neighborRef] != ref_frame_sign_bias[MbRefFrame[StartRow][StartCol]]) {

 outMv[0] = −outMv[0]

 outMv[1] = −outMv[1]

 }

8.4.5.2 Sub-block motion vector prediction process

This process is invoked when decoding sub_mv_mode.

Inputs to this process are:

 the variable i indicating which partition is being processed,

 the variables StartRow and StartCol specifying the current macroblock.

Outputs of this process are LeftMv and AboveMv.

The variable b is derived as follows:

 If mv_split_mode is equal to MV_TOP_BOTTOM, b is set equal to 8 * i.

 Otherwise, if mv_split_mode is equal to MV_LEFT_RIGHT, b is set equal to 2 * i.

 Otherwise, if mv_split_mode is equal to MV_QUARTERS, the following applies:

 If i is equal to 0, b is set equal to 0.

 Otherwise, if i is equal to 1, b is set equal to 2.

 Otherwise, if i is equal to 2, b is set equal to 8.

 Otherwise (i is equal to 3), b is set equal to 10.

 Otherwise (mv_split_mode is equal to MV_16), b is set equal to i.

The variable LeftMv is derived as follows:

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 49

 If (b & 3) is equal to 0, the following applies:

 If StartCol is equal to 0 or MbRefFrame[StartRow][StartCol − 1] is equal to 0, LeftMv is set to 0.

 Otherwise, LeftMv is set equal to the contents of SubMvs[StartRow][StartCol − 1][b + 3].

 Otherwise, leftMv is set equal to SubMvs[StartRow][StartCol][b − 1].

The variable AboveMv is derived as follows:

 If b is less than 4, the following applies:

 If StartRow is equal to 0 or the MbRefFrame[StartRow − 1][StartCol] is equal to 0, AboveMv is set
to 0.

 Otherwise, AboveMv is set equal to the contents of SubMvs[StartRow − 1][StartCol][b + 12].

 Otherwise, AboveMv is set equal to SubMvs[StartRow][StartCol][b − 4].

8.4.6 Motion vector reconstruction process

8.4.6.1 General

Inputs to this process are:

 the predicted motion vectors NearMvs,

 the motion vector differences Mvdy, Mvdx, SubMvdy, SubMvdy.

Outputs of this process are the reconstructed motion vectors Mv and SubMvs.

If mv_mode is equal to MV_SPLIT, then this process does nothing.

Otherwise the reconstructed motion vector depends on mv_mode as follows:

 If mv_mode is equal to MV_NEAREST, Mv is set equal to NearMvs[1].

 Otherwise, if mv_mode is equal to MV_NEAR, Mv is set equal to NearMvs[2].

 Otherwise, if mv_mode is equal to MV_ZERO, Mv[0] is set equal to 0 and Mv[1] is set equal to 0.

 Otherwise, if mv_mode is equal to MV_NEW, Mv[0] is set equal to Mvdy + NearMvs[0][0] and Mv[1] is
set equal to Mvdx + NearMvs[0][1].

For x = 0..3 and y = 0..3 the value of SubMvs[StartRow][StartCol][x + y * 4] is set equal to Mv.

8.4.6.2 Sub-block motion vector reconstruction process

This process updates the contents of SubMvs for the 4x4 blocks within the macroblock partition.

Inputs to this process are:

 the variable i indicating which partition is being processed,

 the predicted motion vectors LeftMv and AboveMv.

The variables b, w, h are derived as follows:

ISO/IEC FDIS 14496-31:2017(E)

50 © ISO/IEC 2017 – All rights reserved

 If mv_split_mode is equal to MV_TOP_BOTTOM, b is set equal to 8 * i, w is set equal to 4, h is set equal
to 2.

 Otherwise, if mv_split_mode is equal to MV_LEFT_RIGHT, b is set equal to 2 * i, w is set equal to 2, h is
set equal to 4.

 Otherwise, if mv_split_mode is equal to MV_QUARTERS, w is set equal to 2, h is set equal to 2, and the
following applies:

 If i is equal to 0, b is set equal to 0.

 Otherwise, if i is equal to 1, b is set equal to 2.

 Otherwise, if i is equal to 2, b is set equal to 8.

 Otherwise (i is equal to 3), b is set equal to 10.

 Otherwise (mv_split_mode is equal to MV_16), b is set equal to i, w is set equal to 1, h is set equal to 1.

A variable predMv is derived as follows:

 If sub_mv_mode is equal to LEFT4X4, predMv is set equal to LeftMv.

 Otherwise, if sub_mv_mode is equal to ABOVE4X4, predMv is set equal to AboveMv.

 Otherwise, if sub_mv_mode is equal to ZERO4X4, predMv is set equal to 0.

 Otherwise (sub_mv_mode is equal to NEW4X4), predMv[0] is set equal to NearMvs[0][0] + SubMvdy,
and predMv[1] is set equal to NearMvs[0][1] + SubMvdx.

For x = 0..w−1 and y = 0..h−1 the value of SubMvs[StartRow][StartCol][b + x + y * 4] is set equal to predMv.

8.5 Loop filter process

8.5.1 General

The purpose of the loop filter is to eliminate (or at least reduce) visually objectionable artifacts associated with
the semi-independence of the coding of macroblocks and their constituent sub-blocks.

The loop filter is integral to decoding, in that the results of loop filtering are used in the prediction of subsequent
frames.

Input to this process is the array CurrPic of reconstructed samples.

Output from this process is a modified array CurrPic containing deblocked samples.

The loop filter is applied for all macroblocks as follows:

 for (row = 0; row < MbRows; row++)

 for (col = 0; col < MbCols; col++)

The macroblock data syntax elements are set to the values extracted for the macroblock with
matching row and col.

If filter_type is equal to 0, the normal macroblock deblocking process specified in 8.5.2 is invoked
with the variables row and col as inputs.

Otherwise (if filter_type is equal to 1), the simple macroblock deblocking process specified in 8.5.4
is invoked with the variables row and col as inputs.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 51

The loop filter acts on the edges between adjacent macroblocks and on the edges between adjacent sub-blocks
of a macroblock. All such edges are horizontal or vertical. For each sample position on an edge, a small number
(two or three) of samples adjacent to either side of the position are examined and possibly modified. The
displacements of these samples are at a right angle to the edge orientation; that is, for a horizontal edge, the
samples immediately above and below the edge position are treated, and for a vertical edge, the samples
immediately to the left and right of the edge are treated.

This collection of samples associated to an edge position is referred to as a segment (in the context of loop
filtering); the length of a segment is 2, 4, 6, or 8. Excepting that the normal filter uses a slightly different process
for, and either filter may apply different control parameters to, the edges between macroblocks and those
between sub-blocks, the treatment of edges is quite uniform: All segments straddling an edge are treated
identically; there is no distinction between the treatment of horizontal and vertical edges, whether between
macroblocks or between sub-blocks.

As a consequence, adjacent sub-block edges within a macroblock may be concatenated and processed in their
entirety. There is a single 8-sample-long vertical edge horizontally centered in each of the Cb and Cr blocks
(the concatenation of upper and lower 4-sample edges between chroma sub-blocks), and three 16-sample-long
vertical edges at horizontal positions one quarter, one half, and three quarters of the width of the luma
macroblock, each representing the concatenation of four 4-sample sub-edges between pairs of Y sub-blocks.

The macroblocks comprising the frame are processed in raster-scan order. Each macroblock is associated with
the inter-macroblock edges immediately above and to the left of it (but not the edges below and to the right of
it), as well as the edges between its sub-blocks.

Because many samples belong to segments straddling two or more edges, and so will be filtered more than
once, the order in which edges are processed given above needs to be respected by any implementation. Within
a single edge, however, the segments straddling that edge are disjoint, and the order in which these segments
are processed is immaterial.

NOTE The loop filter applies after all the macroblocks have been reconstructed (i.e., had their prediction summed with
their prediction residual); correct decoding is predicated on the fact that already-constructed portions of the current frame
referenced via intra prediction are not yet filtered.

8.5.2 Normal macroblock deblocking process

The inputs to this process are variables StartRow and StartCol specifying which macroblock is to be deblocked.

The filter level process specified in clause 8.5.3 is invoked with the variables StartRow and StartCol as inputs
and the output assigned to the variable filterLevel.

If filterLevel is equal to 0, then this process immediately returns and no deblocking is applied to the current
macroblock.

The variable FilterInternal and the threshold variables are calculated by the loop filter threshold process as
specified in clause 8.5.11 invoked with the variable filterLevel as input.

If StartCol is not equal to 0, the lefthand luma macroblock edge is deblocked by invoking the macroblock edge
deblocking process specified in clause 8.5.5 with colourPlane set equal to 0, dx set equal to 1, dy set equal to
0, x set equal to StartCol * 16, y set equal to StartRow * 16 + i with i = 0..15.

If StartCol is not equal to 0, the lefthand chroma macroblock edge is deblocked by invoking the macroblock
edge deblocking process specified in clause 8.5.5 with dx set equal to 1, dy set equal to 0, x set equal to StartCol
* 8, y set equal to StartRow * 8 + i with i = 0..7 and colourPlane = 1..2.

If FilterInternal is equal to 1, the internal luma vertical edges are deblocked by invoking the sub-block edge
deblocking process specified in clause 8.5.6 with colourPlane set equal to 0, dx set equal to 1, dy set equal to
0, x set equal to StartCol * 16 + b * 4, y set equal to StartRow * 16 + i with i = 0..15 and b = 1..3.

ISO/IEC FDIS 14496-31:2017(E)

52 © ISO/IEC 2017 – All rights reserved

If FilterInternal is equal to 1, the internal chroma vertical edges are deblocked by invoking the sub-block edge
deblocking process specified in clause 8.5.6 with dx set equal to 1, dy set equal to 0, x set equal to StartCol * 8
+ 4, y set equal to StartRow * 8 + i with i = 0..7 and colourPlane = 1..2.

If StartRow is not equal to 0, the above luma macroblock edge is deblocked by invoking the macroblock edge
deblocking process specified in clause 8.5.5 with colourPlane set equal to 0, dx set equal to 0, dy set equal to
1, x set equal to StartCol * 16 + i, y set equal to StartRow * 16 with i = 0..15.

If StartRow is not equal to 0, the above chroma macroblock edge is deblocked by invoking the macroblock edge
deblocking process specified in clause 8.5.5 with dx set equal to 0, dy set equal to 1, x set equal to StartCol * 8
+ i, y set equal to StartRow * 8 with i = 0..7 and colourPlane = 1..2.

If FilterInternal is equal to 1, the internal luma horizontal edges are deblocked by invoking the sub-block edge
deblocking process specified in clause 8.5.6 with colourPlane set equal to 0, dx set equal to 0, dy set equal to
1, x set equal to StartCol * 16 + i, y set equal to StartRow * 16 + b * 4 with i = 0..15 and b = 1..3.

If FilterInternal is equal to 1, the internal chroma horizontal edges are deblocked by invoking the sub-block edge
deblocking process specified in clause 8.5.6 with dx set equal to 0, dy set equal to 1, x set equal to StartCol * 8
+ i, y set equal to StartRow * 8 + 4 with i = 0..7 and colourPlane = 1..2.

8.5.3 Filter level process

The inputs to this process are:

 the segment_id for the current macroblock,

 variables StartRow and StartCol specifying the current macroblock.

The output of this process is the variable filterLevel.

The variable filterLevel is specified by the following ordered steps:

a) filterLevel is set equal to loop_filter_level.

b) If segmentation_enabled is equal to 1, filterLevel is adjusted based on the segment_id as follows:

1) If segment_feature_mode is equal to 0, filterLevel is incremented by LfLevel[segment_id].

2) Otherwise, filterLevel is set equal to LfLevel[segment_id].

c) filterLevel is set equal to Clip3(0, 63, filterLevel)

d) If loop_filter_adj_enable is equal to 1, filterLevel is incremented by
RefDelta[MbRefFrame[StartRow][StartCol]].

e) If loop_filter_adj_enable is equal to 1 and is_inter_mb is equal to 0, the following applies:

1) If intra_y_mode is equal to B_PRED, filterLevel is incremented by ModeDelta[0].

f) If loop_filter_adj_enable is equal to 1 and is_inter_mb is equal to 1, the following applies:

1) If mv_mode is equal to MV_ZERO, filterLevel is incremented by ModeDelta[1].

2) Otherwise, if mv_mode is equal to MV_SPLIT, filterLevel is incremented by ModeDelta[3].

3) Otherwise, filterLevel is incremented by ModeDelta[2].

g) filterLevel is set equal to Clip3(0, 63, filterLevel)

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 53

8.5.4 Simple macroblock deblocking process

The inputs to this process are variables StartRow and StartCol specifying which macroblock is to be deblocked.

The filter level process specified in clause 8.5.3 is invoked with the variables StartRow and StartCol as inputs
and the output assigned to the variable filterLevel.

If filterLevel is equal to 0, then this process immediately returns and no deblocking is applied to the current
macroblock.

The variable FilterInternal and the threshold variables are calculated by the loop filter threshold process as
specified in clause 8.5.11 invoked with the variable filterLevel as input.

The variable MbLimit is set equal to (EdgeLimit + 2) * 2 + InteriorLimit.

The variable BLimit is set equal to EdgeLimit * 2 + InteriorLimit.

If StartCol is not equal to 0, the lefthand luma macroblock edge is deblocked by invoking the simple edge
deblocking process specified in clause 8.5.7 with limit set equal to MbLimit, dx set equal to 1, dy set equal to 0,
x set equal to StartCol * 16, y set equal to StartRow * 16 + i with i = 0..15.

If FilterInternal is equal to 1, the internal luma vertical edges are deblocked by invoking the simple edge
deblocking process specified in clause 8.5.7 with limit set equal to BLimit, dx set equal to 1, dy set equal to 0, x
set equal to StartCol * 16 + b * 4, y set equal to StartRow * 16 + i with i = 0..7 and b = 1..3.

If StartRow is not equal to 0, the above luma macroblock edge is deblocked by invoking the simple edge
deblocking process specified in clause 8.5.7 with limit set equal to MbLimit, dx set equal to 0, dy set equal to 1,
x set equal to StartCol * 16 + i, y set equal to StartRow * 16 with i = 0..15.

If FilterInternal is equal to 1, the internal luma horizontal edges are deblocked by invoking the simple edge
deblocking process specified in clause 8.5.7 with limit set equal to BLimit, dx set equal to 0, dy set equal to 1, x
set equal to StartCol * 16 + i, y set equal to StartRow * 16 + b * 4 with i = 0..7 and b = 1..3.

8.5.5 Macroblock edge deblocking process

The inputs to this process are:

 a variable colourPlane specifying the colour component of the edge,

 variables dx and dy specifying the direction of the edge,

 variables x and y specifying the location of the edge.

The threshold process as specified in clause 8.5.8 is invoked with inputs colourPlane, dx, dy, x, y and limit set
equal to EdgeLimit + 2, and the output is assigned to the variables belowThreshold and hevEdge.

The edge is deblocked as follows:

 If belowThreshold is equal to 1 and hevEdge is equal to 1, the common filtering process as specified in
clause 8.5.9 is invoked with inputs colourPlane, dx, dy, x, y, useOuterTaps set equal to 1, and
adjustOuterTaps set equal to 0.

 Otherwise, if belowThreshold is equal to 1 (and hevEdge is equal to 0), the macroblock edge filtering
process as specified in clause 8.5.10 is invoked with inputs colourPlane, dx, dy, x, y.

 Otherwise (belowThreshold is equal to 0), no deblocking is performed on the edge.

ISO/IEC FDIS 14496-31:2017(E)

54 © ISO/IEC 2017 – All rights reserved

8.5.6 Sub-block edge deblocking process

The inputs to this process are:

 a variable colourPlane specifying the colour component of the edge,

 variables dx and dy specifying the direction of the edge,

 variables x and y specifying the location of the edge.

The threshold process as specified in clause 8.5.8 is invoked with inputs colourPlane, dx, dy, x, y and limit set
equal to EdgeLimit, and the output is assigned to the variables belowThreshold and hevEdge.

The edge is deblocked as follows:

 If belowThreshold is equal to 1, the common filtering process as specified in clause 8.5.9 is invoked with
inputs colourPlane, x, y, dx, dy, useOuterTaps set equal to hevEdge, and adjustOuterTaps set equal
to !hevEdge.

 Otherwise (belowThreshold is equal to 0), no deblocking is performed on the edge.

8.5.7 Simple edge deblocking process

The inputs to this process are:

 variables dx and dy specifying the direction of the edge,

 variables x and y specifying the location of the edge,

 a variable limit specifying the level at which deblocking is applied.

The variables p[i] and q[i] are specified for i = 0..1 as follows:

 p[i] = CurrPic[colourPlane][x − dx − dx * i][y − dy − dy * i]

q[i] = CurrPic[colourPlane][x + dx * i][y + dy * i]

The variable belowThreshold is set by the following ordered steps:

a) belowThreshold is set equal to 1

b) If (Abs(p[0] − q[0]) * 2 + (Abs(p[1] − q[1]) >> 1)) is greater than limit, belowThreshold is set equal
to 0.

The edge is deblocked as follows:

 If belowThreshold is equal to 1, the common filtering process as specified in clause 8.5.9 is invoked with
colourPlane set equal to 0, useOuterTaps set equal to 1, adjustOuterTaps set equal to 0, and the variables
dx, dy, x, y as inputs.

 Otherwise (belowThreshold is equal to 0), no deblocking is performed on the edge.

8.5.8 Threshold process

The inputs to this process are:

 a variable colourPlane specifying the colour component of the edge,

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 55

 variables dx and dy specifying the direction of the edge,

 variables x and y specifying the location of the edge,

 a variable limit specifying the maximum size before deblocking is disabled.

The output is a variable belowThreshold indicating whether the edge is deblocked, and a variable hevEdge
indicating whether the edge has high edge variance.

The variables p[i] and q[i] are specified for i = 0..3 as follows:

 p[i] = CurrPic[colourPlane][x − dx − dx * i][y − dy − dy * i]

q[i] = CurrPic[colourPlane][x + dx * i][y + dy * i]

The variable simpleLimit is set equal to 2 * limit + InteriorLimit.

The output variable belowThreshold is set by the following ordered steps:

a) belowThreshold is set equal to 1

b) If (Abs(p[0] − q[0]) * 2 + (Abs(p[1] − q[1]) >> 1)) is greater than simpleLimit, belowThreshold is set
equal to 0.

c) If filter_type is equal to 0, and Abs(p[i + 1] − p[i]) is greater than InteriorLimit for any of i = 0..2,
belowThreshold is set equal to 0.

d) If filter_type is equal to 0, and Abs(q[i + 1] − q[i]) is greater than InteriorLimit for any of i = 0..2,
belowThreshold is set equal to 0.

The output variable hevEdge is set by the following ordered steps:

a) hevEdge is set equal to 0

b) If Abs(p[1] − p[0]) is greater than HevThreshold, hevEdge is set equal to 1.

c) If Abs(q[1] − q[0]) is greater than HevThreshold, hevEdge is set equal to 1.

8.5.9 Common filtering process

The inputs to this process are:

 a variable colourPlane specifying the colour component of the edge,

 variables dx and dy specifying the direction of the edge,

 variables x and y specifying the location of the edge,

 a variable useOuterTaps specifying whether the outer taps are examined,

 a variable adjustOuterTaps specifying whether the outer taps are modified,

The variables p[i] and q[i] are specified for i = 0..1 as follows:

 p[i] = CurrPic[colourPlane][x − dx − dx * i][y − dy − dy * i]

q[i] = CurrPic[colourPlane][x + dx * i][y + dy * i]

ISO/IEC FDIS 14496-31:2017(E)

56 © ISO/IEC 2017 – All rights reserved

The variables a, f1, f2, f3 are specified as:

 a = 3 * (q[0] − p[0])

if (useOuterTaps)

 a += Clip3(−128, 127, p[1] − q[1])

a = Clip3(−128, 127, a)

f1 = ((a + 4 > 127) ? 127 : a + 4) >> 3

f2 = ((a + 3 > 127) ? 127 : a + 3) >> 3

f3 = (f1 + 1) >> 1

The edge samples are modified as follows:

 CurrPic[colourPlane][x − dx][y − dy] = Clip1(p[0] + f2)

CurrPic[colourPlane][x][y] = Clip1(q[0] − f1)

If adjustOuterTaps is equal to 1, then the additional edge samples are modified as follows:

 CurrPic[colourPlane][x − 2 * dx][y − 2 * dy] = Clip1(p[1] + f3)

CurrPic[colourPlane][x + dx][y + dy] = Clip1(q[1] − f3)

8.5.10 Macroblock edge filtering process

The inputs to this process are:

 a variable colourPlane specifying the colour component of the edge,

 variables dx and dy specifying the direction of the edge,

 variables x and y specifying the location of the edge,

The variables p[i] and q[i] are specified for i = 0..2 as follows:

 p[i] = CurrPic[colourPlane][x − dx − dx * i][y − dy − dy * i]

q[i] = CurrPic[colourPlane][x + dx * i][y + dy * i]

The variables a, w, f[0], f[1], f[2] are specified as:

 a = Clip3(−128, 127, p[1] − q[1])

w = Clip3(−128, 127, a + 3 * (q[0] − p[0]))

f[0] = (27 * w + 63) >> 7

f[1] = (18 *w + 63) >> 7

f[2] = (9 * w + 63) >> 7

The edge samples are modified as follows:

 for (i = 0; i < 3; i++) {

CurrPic[colourPlane][x − dx − dx * i][y − dy − dy * i] = Clip1(p[i] + f[i])

CurrPic[colourPlane][x + dx * i][y + dy * i] = Clip1(q[i] − f[i])

 }

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 57

8.5.11 Loop filter threshold process

The input to this process is a variable filterLevel.

The output of this process is to set the threshold variables EdgeLimit, InteriorLimit, and HevThreshold and to
set the FilterInternal variable that controls whether sub-block edges are filtered.

The variable EdgeLimit is set equal to filterLevel.

The variable InteriorLimit is set depending on sharpness_level as follows:

 If sharpness_level is zero, InteriorLimit is set equal to Max(1,filterLevel)

 Otherwise, if sharpness_level is greater than 4, the following applies:

InteriorLimit = Clip3(1, 9 − sharpness_level, filterLevel >> 2)

 Otherwise, the following applies:

InteriorLimit = Clip3(1, 9 − sharpness_level, filterLevel >> 1)

The variable HevThreshold is specified by the following ordered steps:

a) HevThreshold is set equal to 0.

b) If filterLevel is greater than or equal to 15, HevThreshold is incremented by 1.

c) If filterLevel is greater than or equal to 40, HevThreshold is incremented by 1.

d) If filterLevel is greater than or equal to 20 and KeyFrame is equal to 0, HevThreshold is incremented by 1.

The variable FilterInternal is set as follows:

 If HasNonZero is equal to 1 for the current macroblock, FilterInternal is set equal to 1.

 Otherwise, if is_inter_mb is equal to 0 and intra_y_mode is equal to B_PRED, FilterInternal is set to 1.

 Otherwise, if is_inter_mb is equal to 1 and imv_mode is equal to MV_SPLIT, FilterInternal is set to 1.

 Otherwise, FilterInternal is set equal to 0.

8.6 Output process

This process is invoked after the loop filtering has taken place and if show_frame is equal to 1.

Inputs to this process are the samples in the current frame CurrPic[colourPlane][x][y].

Output from this process is a frame to be displayed.

The decoder should provide the values of horizontal_scale and vertical_scale to allow appropriate scaling to
take place. The methods for upscaling and displaying a frame are outside the scope of this document.

The decoder provides an output frame consisting of a Y component, a Cb component, and a Cr component.

The Y component is FrameWidth samples wide by FrameHeight samples high and the sample at location x
samples from the left side of the component and y samples from the top of the component is given by
CurrPic[0][x][y] with x = 0..FrameWidth − 1 and y = 0..FrameHeight − 1.

ISO/IEC FDIS 14496-31:2017(E)

58 © ISO/IEC 2017 – All rights reserved

The Cb component is (FrameWidth + 1) >> 1 samples wide by (FrameHeight + 1) >> 1 samples high and the
sample at location x samples from the left side of the component and y samples from the top of the component
is given by CurrPic[1][x][y] with x = 0..((FrameWidth + 1) >> 1) − 1 and y = 0..((FrameHeight + 1) >> 1) − 1.

The Cr component is (FrameWidth + 1) >> 1 samples wide by (FrameHeight + 1) >> 1 samples high and the
sample at location x samples from the left side of the component and y samples from the top of the component
is given by CurrPic[2][x][y] with x = 0..((FrameWidth + 1) >> 1) − 1 and y = 0..((FrameHeight + 1) >> 1) − 1.

8.7 Reference frame update process

8.7.1 General

This process is invoked as the final step in decoding a frame.

Inputs to this process are the samples in the current frame CurrPic[colourPlane][x][y].

Output from this process is an updated set of reference frames.

The following ordered steps apply:

a) Depending on the value of copy_buffer_to_ref2, the following applies:

1) If copy_buffer_to_ref2 is equal to 1, the copy frame process as specified in clause 8.7.2 is invoked with
the source as Ref0 and the destination as Ref2.

2) Otherwise, if copy_buffer_to_ref2 is equal to 2, the copy frame process as specified in clause 8.7.2 is
invoked with the source as Ref1 and the destination as Ref2.

3) Otherwise no change is made to Ref2.

b) Depending on the value of copy_buffer_to_ref1, the following applies:

1) If copy_buffer_to_ref1 is equal to 1, the copy frame process as specified in clause 8.7.2 is invoked with
the source as Ref0 and the destination as Ref1.

2) Otherwise, if copy_buffer_to_ref2 is equal to 2, the copy frame process as specified in clause 8.7.2 is
invoked with the source as Ref2 and the destination as Ref1.

3) Otherwise no change is made to Ref1.

c) If refresh_ref1_frame is equal to 1, the copy frame process as specified in clause 8.7.2 is invoked with the
source as CurrPic and the destination as Ref1.

d) If refresh_ref2_frame is equal to 1, the copy frame process as specified in clause 8.7.2 is invoked with the
source as CurrPic and the destination as Ref2.

NOTE These steps happen in order, so if both copy_buffer_to_ref2 and copy_buffer_to_ref1 are equal to 2, then firstly
the old Ref1 will be copied to Ref2, followed secondly by copying the updated Ref2 to Ref1. In this case both Ref2 and Ref1
will end up with copies of the previous Ref1.

e) If refresh_ref0 is equal to 1, the copy frame process as specified in clause 8.7.2 is invoked with the source
as CurrPic and the destination as Ref0.

8.7.2 Copy frame process

The inputs to this process are:

 a source array Src,

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 59

 a destination array Dst.

The outputs from this process are modifications made to the destination array.

This process copies the contents of the Src array into the Dst array for all macroblocks as follows:

 for (y = 0; y < 16 * MbRows; y++)

for (x = 0; x < 16 * MbCols; x++)

 Dst[0][x][y] = Src[0][x][y]

 for (colourPlane = 1; colourPlane <= 2; colourPlane++)

for (y = 0; y < 8 * MbRows; y++)

for (x = 0; x < 8 * MbCols; x++)

 Dst[colourPlane][x][y] = Src[colourPlane][x][y]

9 Parsing process

9.1 Parsing process for f(n)

This process is invoked when the descriptor of a syntax element in the syntax tables is equal to f(n).

The next n bits are read from the bit stream.

This process is specified as follows:

 x = 0
 for (i = 0; i < n; i++)
 x = 2 * x + read_bit()

read_bit() reads the next bit from a bitstream and advances the bitstream pointer by 1. If a bitstream is provided
as a series of bytes, then the first bit is given by the most significant bit of the first byte.

The value for the syntax element is given by x.

9.2 Parsing process for Boolean decoder

9.2.1 General

Aside from the uncompressed header and the partition sizes, the entire VCB bitstream is entropy coded. The
entropy decoder is referred to as the “Boolean decoder” and the functions init_bool(b, sz) and read_bool(p)
are used in this document to indicate the entropy decoding operation.

9.2.2 Initialization process for Boolean decoder

This process is invoked when the function init_bool(b, sz) is called from the syntax structure.

A bitstream shall not contain data that results in this process being called with sz < 1.

The variable boolStart is set to the current bit position.

NOTE 1 the bit position will always be byte aligned when init_bool is invoked because the uncompressed header and
the data partitions are always a whole number of bytes long.

The variable boolEnd is set to boolStart + 8 * sz.

The variable BoolValue[b] is read using the f(8) parsing process.

The variable BoolPosition[b] is set to boolStart + 8.

ISO/IEC FDIS 14496-31:2017(E)

60 © ISO/IEC 2017 – All rights reserved

The variable BoolRange[b] is set to 255.

The variable BoolMaxBits[b] is set to 8 * sz − 8.

The current bit position is set to boolEnd.

NOTE 2 the init_bool function skips over the entire content of the partition. Syntax elements read with f(n) will be read
from after the partition, while Boolean decoded syntax elements will be read from within the partition.

9.2.3 Boolean decoder selection process

This process is invoked when the function set_bool(b) is called from the syntax structure.

The current Boolean Decoder is changed to be b as follows:

 CurrBool = b

9.2.4 Boolean decoding process

This process is invoked when the function read_bool(p) is called from the syntax structure.

A variable split is set to 1 + (((BoolRange[CurrBool] − 1) * p) >> 8)

The variables BoolRange[CurrBool], BoolValue[CurrBool], and ReadBit are updated as follows:

 If BoolValue[CurrBool] is less than split, then the following applies:

BoolRange[CurrBool] = split

ReadBit = 0

 Otherwise (BoolValue[CurrBool] is greater than or equal to split), then the following applies:

BoolRange[CurrBool] −= split

BoolValue[CurrBool] −= split

ReadBit = 1

 While BoolRange[CurrBool] is less than 128 the following applies:

 A variable newBit is derived as:

 If BoolMaxBits[CurrBool] > 0, the following ordered steps apply:

1. newBit is set to the contents of a bitstream at position BoolPosition[CurrBool].

2. BoolMaxBits[CurrBool] −= 1

3. BoolPosition[CurrBool] += 1

 Otherwise, newBit is set equal to 0.

 BoolRange[CurrBool] is doubled

 BoolValue[CurrBool] is set as follows:

 BoolValue[CurrBool] = (BoolValue[CurrBool] << 1) + newBit

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 61

The return value for the function is given by the variable ReadBit.

9.2.5 Parsing process for read_literal

This process is invoked when the function read_literal(n) is invoked.

This process is specified as follows:

 x = 0
 for (i = 0; i < n; i++) {
 x = 2 * x + read_bool(128)
 }

The return value for the function is given by x.

9.3 Parsing process for tree encoded syntax elements

9.3.1 General

This process is invoked when the descriptor of a syntax element in the syntax tables is equal to T.

The decoding of a syntax element depends on a tree and a list of probabilities.

Clause 9.3.2 specifies how a tree is chosen for each syntax element.

Clause 9.3.3 specifies how the probabilities are chosen for each syntax element.

Clause 9.3.4 specifies how the value of the syntax element is decoded based on the chosen tree and
probabilities.

9.3.2 Tree selection process

Input to this process is the name of a syntax element.

Output from this process is a tree and a starting node.

The starting node is 0 for all syntax elements except coeff_token and short_mv.

The tree is chosen based on the syntax element as follows:

segment_id: the tree is mbSegmentTree:

Table 17 — segment_id decoding tree

mbSegmentTree [2 * (4 − 1)] = {

 2, 4, /* root: "0", "1" subtrees */

 −0, −1, /* "00" = 0th value, "01" = 1st value */

 −2, −3 /* "10" = 2nd value, "11" = 3rd value */

}

intra_y_mode: The tree depends on the value of KeyFrame:

 If KeyFrame is equal to 1, the tree is kfYmodeTree.

 Otherwise (KeyFrame is equal to 0), the tree is ymodeTree.

ISO/IEC FDIS 14496-31:2017(E)

62 © ISO/IEC 2017 – All rights reserved

Table 18 — intra_y_mode decoding tree in key frames

kfYmodeTree[8] = {

 −B_PRED, 2, /* root: B_PRED = "0", "1" subtree */

 4, 6, /* "1" subtree has 2 descendant subtrees */

 −DC_PRED, −V_PRED, /* "10" subtree: DC_PRED = "100", V_PRED = "101" */

 −H_PRED, −TM_PRED /* "11" subtree: H_PRED = "110",TM_PRED = "111" */

}

Table 19 — intra_y_mode decoding tree in P frames

ymodeTree[8] = {

 −DC_PRED, 2, /* root: DC_PRED = "0", "1" subtree */

 4, 6, /* "1" subtree has 2 descendant subtrees */

 −V_PRED, −H_PRED, /* "10" subtree: V_PRED = "100", H_PRED = "101" */

 −TM_PRED, −B_PRED /* "11" subtree: TM_PRED = "110", B_PRED = "111" */

}

intra_b_mode: the tree is bmodeTree:

Table 20 — intra_b_mode decoding tree

bmodeTree[18] = {

 −B_DC_PRED, 2, /* B_DC_PRED = "0" */

 −B_TM_PRED, 4, /* B_TM_PRED = "10" */

 −B_VE_PRED, 6, /* B_VE_PRED = "110" */

 8, 12,

 −B_HE_PRED, 10, /* B_HE_PRED = "11100" */

 −B_RD_PRED, /* B_RD_PRED = "111010" */

 −B_VR_PRED, /* B_VR_PRED = "111011" */

 −B_LD_PRED, 14, /* B_LD_PRED = "111110" */

 −B_VL_PRED, 16, /* B_VL_PRED = "1111110" */

 −B_HD_PRED, −B_HU_PRED /* HD = "11111110", HU = "11111111" */

}

intra_uv_mode: the tree is uvModeTree:

Table 21 — intra_uv_mode decoding tree

uvModeTree[6] = {

 −DC_PRED, 2, /* root: DC_PRED = "0", "1" subtree */

 −V_PRED, 4, /* "1" subtree: V_PRED = "10", "11" subtree */

 −H_PRED, −TM_PRED /* "11" subtree: H_PRED = "110", TM_PRED = "111" */

}

mv_mode: the tree is mvModeTree:

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 63

Table 22 — mv_mode decoding tree

mvModeTree[8] = {

 −MV_ZERO, 2, /* zero = "0" */

 −MV_NEAREST, 4, /* nearest = "10" */

 −MV_NEAR, 6, /* near = "110" */

 −MV_NEW, −MV_SPLIT /* new = "1110", split = "1111" */

}

mv_split_mode: the tree is mvSplitTree:

Table 23 — mv_split_mode decoding tree

mvSplitTree[6] = {

 −MV_16, 2, /* MV_16 = "0" */

 −MV_QUARTERS, 4, /* MV_QUARTERS = "10" */

 −MV_TOP_BOTTOM, /* MV_TOP_BOTTOM = "110" */

 −MV_LEFT_RIGHT /* MV_LEFT_RIGHT= "111" */

}

sub_mv_mode: the tree is subMvModeTree:

Table 24 — sub_mv_mode decoding tree

subMvModeTree[6] = {

 −LEFT4X4, 2, /* LEFT = "0" */

 −ABOVE4X4, 4, /* ABOVE = "10" */

 −ZERO4X4, −NEW4X4 /* ZERO = "110", NEW = "111" */

}

mv_short: the tree is mvShortTree:

Table 25 — mv_short decoding tree

mvShortTree[18] = {

 0, 0, /* Unused */

 0, 0, /* Unused */

 2 + 4, 8 + 4, /* "0" subtree, "1" subtree */

 4 + 4, 6 + 4, /* "00" subtree, "01" subtree */

 −0, −1, /* 0 = "000", 1 = "001" */

 −2, −3, /* 2 = "010", 3 = "011" */

 10 + 4, 12 + 4, /* "10" subtree, "11" subtree */

 −4, −5, /* 4 = "100", 5 = "101" */

 −6, −7 /* 6 = "110", 7 = "111" */

}

The starting node is 4.

ISO/IEC FDIS 14496-31:2017(E)

64 © ISO/IEC 2017 – All rights reserved

NOTE A non-zero starting node is used to allow the tree decode to share the array mv_prob used for decoding the
other parts of the MV component.

coeff_token: the tree is tokenTree:

Table 26 — coeff_token decoding tree

tokenTree[22] = {

 −dct_eob, 2, /* eob = "0" */

 −DCT_0, 4, /* 0 = "10" */

 −DCT_1, 6, 8, 12, /* 1 = "110" */

 −DCT_2, 10, /* 2 = "11100" */

 −DCT_3, −DCT_4, /* 3 = "111010", 4 = "111011" */

 14, 16,

 −DCT_CAT1, −DCT_CAT2, /* cat1 = "111100", cat2 = "111101" */

 18, 20,

 −DCT_CAT3, −DCT_CAT4, /* cat3 = "1111100", cat4 = "1111101" */

 −DCT_CAT5, −DCT_CAT6 /* cat5 = "1111110", cat6 = "1111111" */

}

The starting node depends on the value of lastCoeff:

 If lastCoeff is equal to 0, the starting node is 2.

 Otherwise (lastCoeff is not equal to 0), the starting node is 0.

9.3.3 Probability selection process

Input to this process is the name of a syntax element.

Output from this process is an array of probabilities.

The probabilities depend on the syntax element as follows:

segment_id: the probabilities are given by the array segment_prob.

intra_y_mode: The probabilities depend on the value of KeyFrame:

 If KeyFrame is equal to 1, the probabilities are given by the array kfYmodeProb.

 Otherwise (KeyFrame is equal to 0), the probabilities are given by the array intra_16x16_prob.

Table 27 — intra_y_mode decoding probabilities

kfYmodeProb[4] = { 145, 156, 163, 128 }

intra_b_mode: the probabilities depend on the value of KeyFrame, the variable ParseBlock, the variable
ParseCol, the variable ParseRow, and the intra coding context in LeftIntraMode and AboveIntraMode as follows:

 The variable leftMode is specified as:

 If (ParseBlock & 3) is not equal to 0, leftMode is set equal to intra_b_mode[ParseBlock − 1].

 Otherwise, if ParseCol is equal to 0, leftMode is set equal to B_DC_PRED.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 65

 Otherwise, leftMode is set equal to LeftIntraMode[block >> 2].

 The variable aboveMode is specified as:

 If ParseBlock is greater than 3, aboveMode is set equal to intra_b_mode[ParseBlock − 4].

 Otherwise, if ParseRow is equal to 0, aboveMode is set equal to B_DC_PRED.

 Otherwise, aboveMode is set equal to AboveIntraMode[ParseCol][ParseBlock].

The probabilities depend on variables aboveMode and leftMode as follows:

 If KeyFrame is equal to 1, the probabilities are given by array kfBmodeProb[aboveMode][leftMode].

 Otherwise (KeyFrame is equal to 0), the probabilities are given by the array bmodeProb.

Table 28 — intra_b_mode decoding probabilities

kfBmodeProb[10][10][9] = {

 {

 { 231, 120, 48, 89, 115, 113, 120, 152, 112 },

 { 152, 179, 64, 126, 170, 118, 46, 70, 95 },

 { 175, 69, 143, 80, 85, 82, 72, 155, 103 },

 { 56, 58, 10, 171, 218, 189, 17, 13, 152 },

 { 144, 71, 10, 38, 171, 213, 144, 34, 26 },

 { 114, 26, 17, 163, 44, 195, 21, 10, 173 },

 { 121, 24, 80, 195, 26, 62, 44, 64, 85 },

 { 170, 46, 55, 19, 136, 160, 33, 206, 71 },

 { 63, 20, 8, 114, 114, 208, 12, 9, 226 },

 { 81, 40, 11, 96, 182, 84, 29, 16, 36 }

 },

 {

 { 134, 183, 89, 137, 98, 101, 106, 165, 148 },

 { 72, 187, 100, 130, 157, 111, 32, 75, 80 },

 { 66, 102, 167, 99, 74, 62, 40, 234, 128 },

 { 41, 53, 9, 178, 241, 141, 26, 8, 107 },

 { 104, 79, 12, 27, 217, 255, 87, 17, 7 },

 { 74, 43, 26, 146, 73, 166, 49, 23, 157 },

 { 65, 38, 105, 160, 51, 52, 31, 115, 128 },

 { 87, 68, 71, 44, 114, 51, 15, 186, 23 },

 { 47, 41, 14, 110, 182, 183, 21, 17, 194 },

 { 66, 45, 25, 102, 197, 189, 23, 18, 22 }

 },

 {

 { 88, 88, 147, 150, 42, 46, 45, 196, 205 },

 { 43, 97, 183, 117, 85, 38, 35, 179, 61 },

 { 39, 53, 200, 87, 26, 21, 43, 232, 171 },

 { 56, 34, 51, 104, 114, 102, 29, 93, 77 },

 { 107, 54, 32, 26, 51, 1, 81, 43, 31 },

 { 39, 28, 85, 171, 58, 165, 90, 98, 64 },

ISO/IEC FDIS 14496-31:2017(E)

66 © ISO/IEC 2017 – All rights reserved

 { 34, 22, 116, 206, 23, 34, 43, 166, 73 },

 { 68, 25, 106, 22, 64, 171, 36, 225, 114 },

 { 34, 19, 21, 102, 132, 188, 16, 76, 124 },

 { 62, 18, 78, 95, 85, 57, 50, 48, 51 }

 },

 {

 { 193, 101, 35, 159, 215, 111, 89, 46, 111 },

 { 60, 148, 31, 172, 219, 228, 21, 18, 111 },

 { 112, 113, 77, 85, 179, 255, 38, 120, 114 },

 { 40, 42, 1, 196, 245, 209, 10, 25, 109 },

 { 100, 80, 8, 43, 154, 1, 51, 26, 71 },

 { 88, 43, 29, 140, 166, 213, 37, 43, 154 },

 { 61, 63, 30, 155, 67, 45, 68, 1, 209 },

 { 142, 78, 78, 16, 255, 128, 34, 197, 171 },

 { 41, 40, 5, 102, 211, 183, 4, 1, 221 },

 { 51, 50, 17, 168, 209, 192, 23, 25, 82 }

 },

 {

 { 125, 98, 42, 88, 104, 85, 117, 175, 82 },

 { 95, 84, 53, 89, 128, 100, 113, 101, 45 },

 { 75, 79, 123, 47, 51, 128, 81, 171, 1 },

 { 57, 17, 5, 71, 102, 57, 53, 41, 49 },

 { 115, 21, 2, 10, 102, 255, 166, 23, 6 },

 { 38, 33, 13, 121, 57, 73, 26, 1, 85 },

 { 41, 10, 67, 138, 77, 110, 90, 47, 114 },

 { 101, 29, 16, 10, 85, 128, 101, 196, 26 },

 { 57, 18, 10, 102, 102, 213, 34, 20, 43 },

 { 117, 20, 15, 36, 163, 128, 68, 1, 26 }

 },

 {

 { 138, 31, 36, 171, 27, 166, 38, 44, 229 },

 { 67, 87, 58, 169, 82, 115, 26, 59, 179 },

 { 63, 59, 90, 180, 59, 166, 93, 73, 154 },

 { 40, 40, 21, 116, 143, 209, 34, 39, 175 },

 { 57, 46, 22, 24, 128, 1, 54, 17, 37 },

 { 47, 15, 16, 183, 34, 223, 49, 45, 183 },

 { 46, 17, 33, 183, 6, 98, 15, 32, 183 },

 { 65, 32, 73, 115, 28, 128, 23, 128, 205 },

 { 40, 3, 9, 115, 51, 192, 18, 6, 223 },

 { 87, 37, 9, 115, 59, 77, 64, 21, 47 }

 },

 {

 { 104, 55, 44, 218, 9, 54, 53, 130, 226 },

 { 64, 90, 70, 205, 40, 41, 23, 26, 57 },

 { 54, 57, 112, 184, 5, 41, 38, 166, 213 },

 { 30, 34, 26, 133, 152, 116, 10, 32, 134 },

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 67

 { 75, 32, 12, 51, 192, 255, 160, 43, 51 },

 { 39, 19, 53, 221, 26, 114, 32, 73, 255 },

 { 31, 9, 65, 234, 2, 15, 1, 118, 73 },

 { 88, 31, 35, 67, 102, 85, 55, 186, 85 },

 { 56, 21, 23, 111, 59, 205, 45, 37, 192 },

 { 55, 38, 70, 124, 73, 102, 1, 34, 98 }

 },

 {

 { 102, 61, 71, 37, 34, 53, 31, 243, 192 },

 { 69, 60, 71, 38, 73, 119, 28, 222, 37 },

 { 68, 45, 128, 34, 1, 47, 11, 245, 171 },

 { 62, 17, 19, 70, 146, 85, 55, 62, 70 },

 { 75, 15, 9, 9, 64, 255, 184, 119, 16 },

 { 37, 43, 37, 154, 100, 163, 85, 160, 1 },

 { 63, 9, 92, 136, 28, 64, 32, 201, 85 },

 { 86, 6, 28, 5, 64, 255, 25, 248, 1 },

 { 56, 8, 17, 132, 137, 255, 55, 116, 128 },

 { 58, 15, 20, 82, 135, 57, 26, 121, 40 }

 },

 {

 { 164, 50, 31, 137, 154, 133, 25, 35, 218 },

 { 51, 103, 44, 131, 131, 123, 31, 6, 158 },

 { 86, 40, 64, 135, 148, 224, 45, 183, 128 },

 { 22, 26, 17, 131, 240, 154, 14, 1, 209 },

 { 83, 12, 13, 54, 192, 255, 68, 47, 28 },

 { 45, 16, 21, 91, 64, 222, 7, 1, 197 },

 { 56, 21, 39, 155, 60, 138, 23, 102, 213 },

 { 85, 26, 85, 85, 128, 128, 32, 146, 171 },

 { 18, 11, 7, 63, 144, 171, 4, 4, 246 },

 { 35, 27, 10, 146, 174, 171, 12, 26, 128 }

 },

 {

 { 190, 80, 35, 99, 180, 80, 126, 54, 45 },

 { 85, 126, 47, 87, 176, 51, 41, 20, 32 },

 { 101, 75, 128, 139, 118, 146, 116, 128, 85 },

 { 56, 41, 15, 176, 236, 85, 37, 9, 62 },

 { 146, 36, 19, 30, 171, 255, 97, 27, 20 },

 { 71, 30, 17, 119, 118, 255, 17, 18, 138 },

 { 101, 38, 60, 138, 55, 70, 43, 26, 142 },

 { 138, 45, 61, 62, 219, 1, 81, 188, 64 },

 { 32, 41, 20, 117, 151, 142, 20, 21, 163 },

 { 112, 19, 12, 61, 195, 128, 48, 4, 24 }

 }

}

ISO/IEC FDIS 14496-31:2017(E)

68 © ISO/IEC 2017 – All rights reserved

Table 29 — intra_y_mode decoding probabilities

bmodeProb[9] = {

 120, 90, 79, 133, 87, 85, 80, 111, 151

}

intra_uv_mode: The probabilities depend on the value of KeyFrame as follows:

 If KeyFrame is equal to 1, the probabilities are given by the array kfUvModeProb.

 Otherwise (KeyFrame is equal to 0), the probabilities are given by the array intra_chroma_prob.

Table 30 — intra_uv_mode decoding probabilities

kfUvModeProb[3] = { 142, 114, 183 }

mv_mode: The probabilities are given by the array mvModeProb. The motion vector prediction process specified
in clause 8.4.5 is invoked and the output assigned to array cnt. The array mvModeProb is computed based on
the array cnt as follows:

 mvModeProb[0] = vcbModeContexts[cnt[0]][0]

 mvModeProb[1] = vcbModeContexts[cnt[1]][1]

mvModeProb[2] = vcbModeContexts[cnt[2]][2]

 mvModeProb[3] = vcbModeContexts[cnt[3]][3]

where the array vcb_mode_contexts is as follows:

Table 31 — mv_mode decoding probabilities

vcbModeContexts[6][4] = {

 { 7, 1, 1, 143 },

 { 14, 18, 14, 107 },

 { 135, 64, 57, 68 },

 { 60, 56, 128, 65 },

 { 159, 134, 128, 34 },

 { 234, 188, 128, 28 }

}

mv_split_mode: The probabilities are given by the array mvSplitProbs:

Table 32 — mv_split_mode decoding probabilities

mvSplitProbs[3] = { 110, 111, 150 }

sub_mv_mode: The sub-block motion vector prediction process as specified in clause 8.4.5.2 is invoked to
generate the variables LeftMv and AboveMv.

mvContext is derived as follows:

 If LeftMv is equal to 0 and AboveMv is equal to 0, mvContext is set equal to 4.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 69

 Otherwise, if LeftMv is equal to AboveMv, mvContext is set equal to 3.

 Otherwise, if AboveMv is equal to 0, mvContext is set equal to 2.

 Otherwise, if LeftMv is equal to 0, mvContext is set equal to 1.

 Otherwise, mvContext is set equal to 0.

The probabilities are given by the array subMvModeProb[mvContext]:

Table 33 — sub_mv_mode decoding probabilities

subMvModeProb[5][3] = {

 { 147, 136, 18 },

 { 106, 145, 1 },

 { 179, 121, 1 },

 { 223, 1, 34 },

 { 208, 1, 1 }

}

mv_short: The probabilities are given by the array mv_prob[cp].

coeff_token: The probabilities depend on the variables ParseBlock, firstCoeff, i, and the token context.

The variable ParseType is specified as:

 If firstCoeff is equal to 1, ParseType is set equal to 0 (luma coefficients when DC coded separately).

 Otherwise, if ParseBlock is less than 16, ParseType is set equal to 3 (luma coefficients).

 Otherwise, if ParseBlock is less than 24, ParseType is set equal to 2 (Cb or Cr coefficients).

 Otherwise, ParseType is set equal to 1 (Walsh-Hadamard coefficients).

The variable ParseBand is set equal to coeffBands[i] where coeffBands is specified as:

Table 34 — Mapping of coefficient position to coefficient band

coeffBands[16] = { 0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7 }

The variable ParseComplexity is set as follows:

 If i is greater than firstCoeff, the following applies:

 If lastCoeff is equal to 0, ParseComplexity is set equal to 0.

 Otherwise, if Abs(lastCoeff) is equal to 1, ParseComplexity is set equal to 1.

 Otherwise, ParseComplexity is set equal to 2.

 Otherwise, the following applies:

 If ParseType is equal to 1, ParseComplexity is set to LeftToken[8] + AboveToken[ParseRow][8].

 Otherwise, the following ordered steps apply:

ISO/IEC FDIS 14496-31:2017(E)

70 © ISO/IEC 2017 – All rights reserved

1. ParseComplexity is set equal to 0.

2. The left ParseComplexity is applied as follows:

 If ParseBlock is 0, 4, 8, or 12, ParseComplexity is set to LeftToken[ParseBlock / 4].

 Otherwise, if ParseBlock is 16, 18, 20, or 22, ParseComplexity is set to LeftToken[4 +
(ParseBlock − 16) / 2].

 Otherwise, ParseComplexity is set to NonZero[ParseBlock − 1].

3. The above ParseComplexity is applied as follows:

 If ParseBlock is 0, 1, 2, or 3, the following applies:

ParseComplexity += AboveToken[ParseCol][ParseBlock]

 Otherwise, if ParseBlock is less than 16, the following applies:

ParseComplexity += NonZero[ParseBlock − 4]

 Otherwise, if ParseBlock is 16, 17, the following applies:

ParseComplexity += AboveToken[ParseCol][4 + (ParseBlock − 16)]

 Otherwise, if ParseBlock is 20, 21, the following applies:

ParseComplexity += AboveToken[ParseCol][6 + (ParseBlock − 20)]

 Otherwise, the following applies:

ParseComplexity += NonZero[ParseBlock − 2]

For the first coefficient (DC, unless the block type is 0), the already encoded blocks within the same component
(Y2, Y, Cb, or Cr) above and to the left of the current block are considered. The context index is then the number
(0, 1, or 2) of these blocks that had at least one non-zero coefficient in their prediction residual data. Specifically,
for Y2, because macroblocks above and to the left may or may not have a Y2 block, the block above is
determined by the most recent macroblock in the same column that has a Y2 block, and the block to the left is
determined by the most recent macroblock in the same row that has a Y2 block.

The "non-existent" predictors above and to the left of the frame are taken to be empty – that is, taken to contain
no non-zero coefficients.

Skipped blocks are considered to have an empty Y2 block if HasY2 is equal to 1.

Skipped blocks are always considered to have empty Y,Cb,Cr blocks.

The prediction residual decoding of each macroblock requires, in each of two directions (above and to the left),
an aggregate coefficient predictor consisting of a single Y2 predictor, two predictors for each of Cb and Cr, and
four predictors for Y. In accordance with the scan-ordering of macroblocks, a decoder needs to maintain a single
"left" aggregate predictor and a row of "above" aggregate predictors.

At the start of each frame, these maintained predictors are cleared. After each block is decoded, the two
predictors referenced by the block are replaced with the (empty or non-empty) state of the block, in preparation
for the later decoding of the blocks below and to the right of the block just decoded.

The probabilities are given by the array coeff_prob[ParseType][ParseBand][ParseComplexity].

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 71

9.3.4 Tree decoding process

The inputs to this process are:

 a tree T that is an array of integers,

 a starting node n,

 an array of probabilities P.

The output of this process is a decoded value.

The output value is derived as follows:

 do {

 n = T[n + read_bool(P[n >> 1])]

 } while (n > 0)

The output value is then given by −n.

10 Additional probability tables

10.1 Probability update tables

Table 35 — Token probability update values

CoeffUpdateProbs[4][8][3][11] = {

 {

 {

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

ISO/IEC FDIS 14496-31:2017(E)

72 © ISO/IEC 2017 – All rights reserved

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255 },

 { 250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255 },

 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 }

 },

 {

 {

 { 217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255 },

 { 234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255 }

 },

 {

 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 73

 { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 }

 },

 {

 {

 { 186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255 },

 { 251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255 }

 },

 {

 { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

ISO/IEC FDIS 14496-31:2017(E)

74 © ISO/IEC 2017 – All rights reserved

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 }

 },

 {

 {

 { 248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255 },

 { 248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

 {

 { 255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 },

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 75

 {

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }

 }

 }

}

Table 36 — MV context update probabilities

MvUpdateProbs[2][19] = {

 {

 237, 246, 253, 253, 254, 254, 254, 254, 254,

 254, 254, 254, 254, 254, 250, 250, 252, 254, 254

 },

 {

 231, 243, 245, 253, 254, 254, 254, 254, 254,

 254, 254, 254, 254, 254, 251, 251, 254, 254, 254

 }

}

10.2 Default probability tables

Table 37 — Default probabilities for decoding the Y and UV modes in P frames

DefaultIntra16x16Prob[4] = {

 112, 86, 140, 37

}

DefaultIntraChromaProb[3] = {

 162, 101, 204

}

Table 38 — Default coeff_token probability values

DefaultCoeffProb[4][8][3][11] = {

 {

 {

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }

 },

 {

 { 253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128 },

 { 189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128 },

 { 106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128 }

 },

 {

ISO/IEC FDIS 14496-31:2017(E)

76 © ISO/IEC 2017 – All rights reserved

 { 1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128 },

 { 181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128 },

 { 78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128 }

 },

 {

 { 1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128 },

 { 184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128 },

 { 77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128 }

 },

 {

 { 1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128 },

 { 170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128 },

 { 37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128 }

 },

 {

 { 1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128 },

 { 207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128 },

 { 102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128 }

 },

 {

 { 1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128 },

 { 177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128 },

 { 80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128 }

 },

 {

 { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },

 { 246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },

 { 255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }

 }

 },

 {

 {

 { 198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62 },

 { 131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1 },

 { 68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128 }

 },

 {

 { 1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128 },

 { 184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128 },

 { 81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128 }

 },

 {

 { 1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128 },

 { 99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128 },

 { 23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128 }

 },

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 77

 {

 { 1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128 },

 { 109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128 },

 { 44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128 }

 },

 {

 { 1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128 },

 { 94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128 },

 { 22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128 }

 },

 {

 { 1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128 },

 { 124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128 },

 { 35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128 }

 },

 {

 { 1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128 },

 { 121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128 },

 { 45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128 }

 },

 {

 { 1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128 },

 { 203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128 },

 { 137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128 }

 }

 },

 {

 {

 { 253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128 },

 { 175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128 },

 { 73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128 }

 },

 {

 { 1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128 },

 { 239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128 },

 { 155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128 }

 },

 {

 { 1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128 },

 { 201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128 },

 { 69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128 }

 },

 {

 { 1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128 },

 { 223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128 },

 { 141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128 }

ISO/IEC FDIS 14496-31:2017(E)

78 © ISO/IEC 2017 – All rights reserved

 },

 {

 { 1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128 },

 { 190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128 },

 { 149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 }

 },

 {

 { 1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128 },

 { 247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128 },

 { 240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128 }

 },

 {

 { 1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128 },

 { 213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128 },

 { 55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128 }

 },

 {

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 },

 { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }

 }

 },

 {

 {

 { 202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255 },

 { 126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128 },

 { 61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128 }

 },

 {

 { 1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128 },

 { 166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128 },

 { 39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128 }

 },

 {

 { 1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128 },

 { 124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128 },

 { 24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128 }

 },

 {

 { 1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128 },

 { 149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128 },

 { 28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128 }

 },

 {

 { 1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128 },

 { 123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128 },

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 79

 { 20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128 }

 },

 {

 { 1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128 },

 { 168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128 },

 { 47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128 }

 },

 {

 { 1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128 },

 { 141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128 },

 { 42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128 }

 },

 {

 { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },

 { 244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 },

 { 238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 }

 }

 }

}

Table 39 — Default MV context probabilities

DefaultMvProb[2][19] = {

 { /* row */

 162, /* is short */

 128, /* sign */

 225, 146, 172, 147, 214, 39, 156, /* short tree */

 128, 129, 132, 75, 145, 178, 206, 239, 254, 254 /* long bits */

 },

 { /* column */

 164, /* is short */

 128, /* sign */

 204, 170, 119, 235, 140, 230, 228, /* short tree */

 128, 130, 130, 74, 148, 180, 203, 236, 254, 254 /* long bits */

 }

}

ISO/IEC FDIS 14496-31:2017(E)

80 © ISO/IEC 2017 – All rights reserved

(Normative)

Profiles and levels

A.1 Main profile

The Main profile allows any bitstream feature to be used.

Level 1 of this profile limits a bitstream to a worst case of roughly a 1080P 60fps 20Mbps stream by the following
restrictions:

 FrameWidth shall be less than or equal to 1920.

 FrameHeight shall be less than or equal to 1080.

 The number of frames per second shall be less than or equal to 60 (this includes both output frames and
frames that are not output).

 The size in bits for a coded frame with KeyFrame equal to 1 shall be less than or equal to 100,000,000 /
60.

 The size in bits for a coded frame with KeyFrame equal to 0 shall be less than or equal to 50,000,000 / 60.

 The number of times the function read_bool() is called for a coded frame with KeyFrame equal to 1 shall
be less than or equal to 2 * 100,000,000 / 60.

 The number of times the function read_bool() is called for a coded frame with KeyFrame equal to 0 shall
be less than or equal to 2 * 50,000,000 / 60.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 81

(Informative)

Reference encoder description

B.1 Summary

This annex gives an overview of an example VCB encoder. Within this annex, this example encoder is referred
to as the reference VCB encoder.

The reference VCB encoder is macroblock (MB) based, a MB being defined as a 16x16 block for the luma
channel (Y) and 8x8 blocks for both chroma channels (Cb, Cr). VCB works exclusively with an 8-bit YCbCr 4:2:0
frame format.

Although two-pass encoding is possible with the VCB reference encoder, this annex will describe one-pass
encoding only. VCB one pass encoding consists of the following major steps:

 The frame type is set. There are two encoding frame types (1) a key frame, which is the same as an I frame,
and (2) a P frame – which is a predicted frame. The initial frame type selection is made on the basis of
whether or not a key frame is being forced because of the command line configuration. A P frame is
approximated to require 4 times less bits than a key frame.

 The target frame is encoded a macroblock (MB) row at a time. The MB is predicted using two types of
predictors, one using spatial information (sample values surrounding the sub-block), and the other temporal
information (motion vectors from other frames). The prediction is subtracted from the original MB to form
the prediction residual. Macroblocks are processed in a raster-scan order.

 Both spatial and temporal prediction are used (depending on the frame type). In either case (spatial or
temporal prediction), the MB mode is selected based on either a rate distortion calculation or a speed
limitation based calculation.

 In the case of mode selection being rate distortion based, the default is to use 16x16 MBs unless the rate
distortion cost for the use of 4x4 blocks is lower, in which case the B_PRED mode is used. These are luma
sizes, whereas the block size for the Cb plane and the Cr plane is kept at 8x8.

 The block is then processed to calculate the prediction residual signal, transform it and quantize it. The
prediction residual signal is transformed using a 4x4 DCT or WHT transform. The DCT or WHT is selected
depending on the prediction mode that is used.

 VCB defines 128 quantization levels in its scalar quantization process. For each video frame, VCB allows
different quantization levels to be used for six frequency components: 1st order luma DC, 1st order luma
AC, 2nd order luma DC, 2nd order luma AC, chroma DC and chroma AC. In addition, VCB’s design includes
a region adaptive quantization scheme, in which a bitstream provides the capability of classifying
macroblocks within a frame into 4 different segments, with each segment having its own quantization
parameter set.

 The resulting quantized transform coefficients are then de-quantized, inverse transformed to the spatial
domain and added back to the prediction signal to form the reconstructed MB as it will appear at the decoder.

 The reconstructed MB is loop filtered through an adaptive in-loop de-blocking filter. The type and strength
of the filtering can be adjusted for different prediction modes and reference frame types.

 The coding modes, any motion vectors and quantized transform coefficients are entropy coded using a
Boolean entropy coder to form the compressed bitstream.

ISO/IEC FDIS 14496-31:2017(E)

82 © ISO/IEC 2017 – All rights reserved

 The reference frame buffers are then updated. Decisions are made with regards to whether or not the
current frame should update one or more of the Ref0, Ref1, or Ref2 reference frames and whether it shoud
be labelled a key frame. The reference encoder implementation tends to produce a Ref1 frame once every
7 (seven) frames approximately.

As mentioned previously, two frame types are defined: key frames and P frames. Key frames, can be decoded
without reference to any other frame and as such, provide random access points in a video stream. P frames
may make reference to prior encoded reference frames.

Specifically, VCB defines three potential reference frames named Ref0, Ref1 and Ref2.

The reference encoder updates the Ref0 reference frame each time a frame is encoded. The Ref1 frame is an
occasional reference frame that is encoded at a higher quality than surrounding frames. The Ref2 frame is
formed by applying a non-linear temporal filter to a contiguous set of future frames.

Blocks in a P frame may be predicted from blocks in any of the three reference frames. Every key frame
automatically updates the Ref1 frame. Further, the encoder may update any of the reference frames with the
last encoded frame if it so chooses (this is done by tracking statistics indicating how useful the current reference
frames have been, in the provided implementation the updates occur in an approximately cyclical manner). Ref2
reference frames may be composed from future frames or from previous frames.

B.2 Prediction

B.2.1 Intra prediction

There are 5 intra prediction modes defined for 16x16 luma MBs; DC_PRED, V_PRED, H_PRED, TM_PRED
and B_PRED.

B_PRED splits the luma MB into 16 4x4 sub-blocks and selects a mode for each sub-block independently. There
are 10 available modes for predicting each 4x4 sub-block, as shown in Figure B.1.

0 – Vertical 1 – Horizontal

2 – DC 3 – Diagonal down-left

4 – Diagonal down-right 5 – Vertical-right

Mean value of A0
to A3 and L0 to L3

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 83

6 – Horizontal down 7 – Vertical left

8 – Horizontal up 9 – TM_PRED

Figure B.1 — B_PRED prediction modes

There are four modes available for the intra prediction of 8x8 chroma blocks; DC_PRED, V_PRED, H_PRED,
and TM_PRED.

The encoder tests each of the available modes and selects the mode causing the smallest sum of differences.

The sample values of already encoded adjacent blocks are copied either in a horizontal, vertical or diagonal
way in order to predict the content of the current block. The sole exception is the TM_PRED prediction mode
that is defined as:

i, jx =
iL +

jA -C "i, j = 0… 3

Intra prediction is performed in raster-scan order. The prediction values are subtracted from the corresponding
values of the input frame to form prediction residual values. The prediction residual values are then transformed
to the frequency domain via a DCT or combined DCT/WHT transform.

B.2.2 Inter prediction

B.2.2.1 General

When using inter prediction, a good match for the current MB is sought in the available reference frames. The
motion vectors (MV) describe the displacement of a block from the reference frame used to predict in the current
MB. The two blocks are compared to establish good prediction. The MVs have up to quarter luma sample
accuracy for the luma plane and up to eighth luma sample accuracy for the chroma planes. The encoder may
also subdivide the MB into number of sub-partitions, and assign MVs to each using the mode MV_SPLIT. The

𝑥ଶଵ 𝐿ଶ

𝐿଴

C 𝐴଴ 𝐴ଵ 𝐴ଶ 𝐴ଷ 𝐴ସ 𝐴ହ 𝐴଺ 𝐴଻

𝐿ଵ

𝐿ଷ

𝑥଴଴ 𝑥଴ଵ

𝑥ଵ଴ 𝑥ଵଵ

𝑥଴ଶ

𝑥ଶ଴

𝑥ଵଶ

𝑥ଶଶ

𝑥଴ଷ

𝑥ଵଷ

𝑥ଶଷ

𝑥ଷ଴ 𝑥ଷଵ 𝑥ଷଶ 𝑥ଷଷ

ISO/IEC FDIS 14496-31:2017(E)

84 © ISO/IEC 2017 – All rights reserved

encoder selects the best mode and reference frame combination to use based on rate-distortion criteria.
Macroblocks in P frames can be intra coded.

The reference frame Ref2 is usually designated non-displayable, but it is possible for the encoder to signal that
it should be displayed if it so chooses. In the encoder Ref2 reference frames are constructed by temporally
filtering a number of future frames and once created may be used as a reference for frames that are encoded
subsequently.

B.2.2.2 Motion vectors

Motion estimation is carried out to quarter luma sample accuracy using a set of interpolation filters, and is based
only on the luma component of the MB. There are five ways to signal a MV (Table B.1 lists these five ways).

Table B.1 — The five types of motion vectors

Name Specification

Nearest Use the nearest MV for this MB

Near Use the next nearest MV for this MB

Zero Use a zero MV for this MB

New Use an explicit offset from implicit MV for this MB

Split Use multiple MVs for this MB

A coding context is defined based on the three neighboring macroblocks, above, left, and above-left. For
macroblocks on the topmost or leftmost edge, or for those coded using an intra-prediction mode, the zero motion
vector is assumed for the purposes of creating the context.

For each MB the VCB encoder considers a context comprising three neighboring MBs when working out a set
of candidate MV predictors:

1) The MB to the left

2) The MB above

3) The MB above and to the left (the above-left MB

Starting with an empty list each candidate MV is evaluated in turn using the following logic:

 If (MV == (0,0)) or (MB encoded with an intra prediction mode)

 ignore and move on to the next MV

 else If (MV is not in the list)

 add to the list with an initial score of +N

 else

 increment the counter of the corresponding MV in the list by +N

Where N = 2 for the above and left MB MVs and N=1 for the above-left MB MV.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 85

Each MV in the list then has a score between 0 & 5, inclusive. The highest scoring MV is classified "BEST" and
will be used as an initial offset to code the real MV if MV_NEW mode is selected.

The highest scoring MV is also classified as "NEAREST", and the second highest scoring MV classified as
"NEAR". It is these two MVs that are used if modes MV_NEAREST and MV_NEAR are signaled.

B.2.2.3 Interpolation and filtering

Interpolation is used to achieve quarter sample accuracy in the motion vector estimation. VCB defines two sets
of interpolation filters, a 6-tap bicubic filter set for higher quality estimation at the cost of greater computational
load, and a bilinear filter set for reduced complexity estimation.

The basic interpolation for either the bicubic or bilinear interpolation filter is by convolution. The process uses a
clamped convolution which limits the output to 8 bits. This convolution proceeds through two passes, the
horizontal initial pass is followed by a vertical pass applied to the resulting data.

For the initial horizontal pass, five additional rows of sample data (two above and three below the block) are
processed to create the nine rows that will be required by the vertical pass.

The additional rows are required so that there is data where the six-tap filter extends beyond the extent of the
block itself. The second pass creates the final 4x4 output block by applying the same filter in the vertical direction.

B.3 Transforms

B.3.1 General

VCB uses two transforms to encode the prediction residual signal, the 4x4 Discrete Cosine Transform (DCT)
and the 4x4 Walsh-Hadamard Transform (WHT). The transform block uses the prediction mode to decide
whether to use the WHT or the DCT.

The DCT is used for the 16 Y, 4 Cb and 4 Cr sub-blocks of a MB. The WHT is used to transform a 4x4 block
constructed from the 16 DC coefficients by the application of the DCT to the 16 sub-blocks. This is a stand-in
for the 0th DCT coefficients of the Y sub-blocks. The additional sub-block is the 25th sub-block in a MB; the
other 24 comprise the 16 luma and 8 chroma sub-blocks.

B.3.2 The discrete cosine transform

The transformation used in VCB is close to the definition of the ideal discrete cosine transform (DCT), given by:



















--
--
--

=

cbbc

aaaa

bccb

aaaa

A
ideal

DCT

where)0cos()21(=a and

b =)8cos()21( 

The main difference is a multiplication with the factor √2 rather than a division by it. In order to guarantee plain
integer arithmetic, the coefficients are stored as constants in an up-scaled version.

Each MB consists of either 16 or 17 SBs containing luma data and 4 SBs for each chroma channel, summing
up to a total of 24 or 25 SBs. The eventual 17th luma SB is available in most prediction modes that process the
whole 16x16 at once (all besides MV_SPLIT and B_PRED). It contains the second order luma information of
the DC coefficients of all luma SBs, which means, these coefficients are transformed via the WHT to further

ISO/IEC FDIS 14496-31:2017(E)

86 © ISO/IEC 2017 – All rights reserved

decrease correlation within a MB. In this case, all transformed SBs start with the 1st coefficient instead of the
0th.

B.3.3 The Walsh Hadamard transform

The 4x4 WHT used by VCB is given by:



















--
--
--

=

1111

1111

1111

1111

H

B.4 Quantization

B.4.1 General

To quantize the prediction residual, each coefficient is divided by one of six quantization factors, the selection
of which depends upon the plane being encoded. In VCB, a plane is a set of two-dimensional data with metadata
describing the type of that data. There are four types of planes in VCB: Y2, the virtual plane from the WHT, Y,
the luma plane, Cb and Cr, the two chroma planes. The quantization step also depend on the coefficient position,
either DC – coefficient 0, or AC – coefficients 1 through 15. These values are specified in one of two ways, via
an index in a look-up table, or as an offset to an index.

The baseline quantization factor, Yac, is specified as a 7-bit lookup into the AC quantizer lookup table. Yac is
added to each of the other quantization factors, which are specified as 4-bit positive or negative offsets from the
index of Yac.

Each other factor is specified as a four bit offset from the Yac index, and includes a sign bit. This means that if
Yac = 16, then a value of Y1 = 3 would be 19, and a value of Y2 = 10 would be 6. This allows an index range
of +/− 15 from the index of Yac. In the VCB bitstream, the five factors other than Yac are optional, and only
included if a flag is logically true (i.e. it evaluates to a value of 1). If they are omitted, they are set to zero, which
indicates that the same quantization factor as Yac should be used for them.

There are two tables defined for each plane (Y, Cb+Cr, Y2), one containing the dequantization coefficients for
the DC values (the 0th coefficient of the DCT) and one for all other coefficients representing higher frequencies.
The choice of the correct value depends on the default quantization parameter (QP) for the whole frame. The
encoded MBs are stored in raster-scan order and start at the beginning of partition 2. In case the frame was
encoded using multiple segments, the corresponding segment ID precedes the DCT (or WHT) coefficients of
each MB. According to the segment ID, the default QP-value that was set for the whole frame may be overridden.

B.4.2 Coding the transformed coefficients

The coefficients of the 16 sub-blocks of each macroblock are Boolean coded, using the defined token set. The
probability table for encoding this is four-dimensional, and is dependent on the type of plane being encoded,
the sub-block being encoded, the local complexity, and the token tree structure.

There are four possible values for the first dimension of the probability table, depending on what type of plane
is being encoded, either Y after a Y2 plane, a Y2 plane, a chroma plane (Cb or Cr), or a Y plane without a Y2
plane, index, respectively from 0 to 3.

The next dimension depends upon the position of the current sub-block within the current macroblock, and is
indexed from 0 to 7, known as bands. The mapping of sub-blocks to the index is shown in Figure B.2.

ISO/IEC FDIS 14496-31:2017(E)

© ISO/IEC 2017 – All rights reserved 87

0 1 2 3

6 4 5 6

6 6 6 6

6 6 6 7

Figure B.2 — Sub-block mapping to the token probability table

The local complexity dimension attempts to match the local area to the corresponding probability. If there are
many zeros in the local area, it is more likely that index 0 is used. If there are some, but not a lot, 1 is used. If
there is a large amount, index 2 is used.

For the first coefficient of the macroblock, the surrounding macroblocks are examined. The index is the number
of surrounding macroblocks that contain at least one non-zero coefficient in their residue. This way, the first
coefficient’s probability accuracy depends on how similar it is to the immediately surrounding macroblocks. The
remaining coefficients local complexity index is described by the following equation:

ï
î

ï
í

ì

>
==

==
=

1)(2

1)(1

00

last

last

last

lc

cAbsif

cAbsif

cif

i

Where the local complexity index is determined by the previous coefficient encoded.

As the meaning between the first and remaining coefficients is slightly different for the local complexity
dimension. The first coefficient has its own probabilities for the cases of surrounding macroblocks, and it does
not interfere with the other meaning of local complexity, which is the value of the previous coefficient.

B.5 Loop filter

B.5.1 General

There can be discontinuities at the boundaries between adjacent macroblocks that require filtering to reduce
their perceptual impact on the viewer. This process occurs in the reconstruction loop of the encoder and is
known as loop filtering.

The loop filter settings can be adapted on segment-level and there are two filtering modes of differing complexity.

The loop filter types may be specified at the frame level and/or MB level. The frame header can select one of
three loop-filter types, “none”, “simple”, and “normal”. The filter signalled at MB, level overrides the one specified
at frame level.

A gradient-based search for horizontal and vertical edges on MB and SB borders is performed. There is no
significant difference in handling both block types. The filtering occurs orthogonal to the edge’s direction and
involves 1 to 4 samples on each side of the border, dependent on the choice of filter type and the sharpness
setting. In case the gradients exceed a certain threshold limit, the border is assumed to be “natural” and no
filtering is performed to preserve high-frequency details in the frame.

MBs encoded with the prediction modes B_PRED or MV_SPLIT are not filtered.

ISO/IEC FDIS 14496-31:2017(E)

88 © ISO/IEC 2017 – All rights reserved

B.5.2 Simple filter

The simple filter processes the luma channel only. For detecting edges, 2 samples on each side of the MB’s
borders are evaluated. If the absolute difference is below a given threshold value, a low pass operation is applied
to the 4 samples, which roughly reduces the gradient by about 25%.

B.5.3 Normal filter

The normal filter applies to all channels, and utilizes up to 4 samples on each side of the border to identify edges.
The process is much more complex than the one for the simple filter. More samples are evaluated, the gradients
for each pair of samples are also taken into account and the low-pass function features different weights
depending on the samples relative position to the edge.

B.6 Entropy coder

VCB uses Boolean coding as its final step in the encoding process to compress the prediction residual after
quantization, transformation, and prediction.

Every symbol of the alphabet is connected to a probability for it to appear. There are different alphabets and
probability tables for the different data sets to encode. The tables can be adapted for the whole frame when it
is stated in the header.

The largest alphabet is used for the compression of quantized DCT coefficients, which contains 12 unique
values and 11 internal nodes to distinguish all possible values. Together with a return value that influences
further decisions; such data-tuples can fit into an 8-bit value and therefore are stored as arrays of such 8-bit
values.

